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Abstract. The solution of D-dimensional Klein-Gordon equation for Kratzer potential was 

presented using asymptotic iteration method. The D-dimensional Klein-Gordon equation was 

reduced to one-dimensional radial differential equation. The Kratzer central potential was used 

in radial part solution to obtain the energy eigenvalues and radial wave function. The bound-

state energy eigenvalues were calculated for various values of quantum numbers and 

dimensions using Matlab software.  

1.  Introduction 

In many fields of physics, particularly quantum physics, atomic physics, and nuclear physics, for the 

relativistic case, Klein Gordon equation is the one of fundamental equation to describe the behavior of 

spinless microscopic particles. Solutions of Klein Gordon equation have been studied in many 

researches, both analytically and approximately. In earlier research, solution of Klein Gordon equation 

give the eigenvalue and eigen function which depend on the certainly potentials and certainly 

methods, such as Hulthen potential using Nikiforov–Uvarov [1], Hulthén-Type Potential using 

supersymmetric quantum mechanics (SUSYQM) [2], Makarov potential using factorization method 

[3], q-Deformed Manning-Rosen Potential using Asymptotic Iteration Method(AIM) [4], [5] and 

other. Recently, AIM has received much attention as a method for solving the Klein-Gordon equation      

[4], [6]–[8]. It has been applied to a large number of physically interesting potentials and has often 

yielded highly-accurate results. 

The solution of Klein Gordon equation was mostly studied in three dimensional. But in recently, 

the solution of quantum system was extended in higher dimensions. Three dimensional space is 

embedded in a higher dimensional space. It was amazing that the force which influences until infinity 

range is so small compared to the electromagnetic force for example. Maybe we experience only a 

small part of it in our three dimensions and the major part is distributed to other dimensions we can’t 

perceive. So it is useful to deal with quantum mechanics in higher dimensions. The higher dimensions 

system in quantum physics has been studied in many cases, such as the solution of Klein-Gordon 

equation in D-dimensions for Hulthen potential [1], [2], Manning- Rosen potential [4], Kratzer 

potential [7], Morse potential [8], Poschl-Teller potential including centrifugal term [9], Hylleraas 

Potential [10], trigonometric Poschl-Teller potential [11], and other.  

In this research, we investigated the Kratzer potential for D-dimensional Klein-Gordon using AIM.  

Kratzer potential is defined as [7], [12] 
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The Klein-Gordon equation for Kratzer potential was reduced to Schodinger like type equation, so it 

can be solved using AIM. AIM is one of alternative method. It has high efficiency and accuracy to 

determine eigen functions and eigen energies. [13]  

2.  Klein-Gordon Equation in D-dimensions 

The time independent KG equation in D-dimensional with potentials of vector and scalar ( )V r  and 

( )S r , respectively, with r  r  describing a spinless particle. In the general form the equation can 

write as [14]–[16] 
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With E and M are the KG energy and the mass of particle. The x  in equation (2) is a D-dimensional 

position vector. The laplacian  
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And  
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The wave function for radial part ( )R r  is decomposed as 
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If  S V , it will produce a non-trivial nonrelativistic limit with a potential function 2V and not 

.V Equation (2) is reduced to KG equation in D-dimension for radial part with the potential function 

V is scaled as 2V . (in the relativistic atomic units 1c  ) [17] 
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3.  Asymptotic Iteration Method (AIM) 

AIM is used to solve the second order homogeneous equation of form [4], [6], [18], [19]. 

 
0 0''( ) ( ) '( ) ( ) ( )n n ny x x y x s x y x   (7) 

with 0 ( ) 0x   and prime symbol denotes the derivative with respect to x. The others parameter n is 

interpreted as the radial quantum number. The other variables,  0 ( )s x  and 0 ( )x  are differentiable. 

To get the solution, we have to differentiate Eq. (7) along x, and find 

 
1 1'''( ) ( ) ''( ) ( ) ( )n n ny x x y x s x y x    (8) 

Where 
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1 0 0 0( ) '( ) s ( ) ( )s x s x x x   (10) 

where 
0 ( ) 0x   and 0 ( )s x  is a function of C  (coefficient of the differential equation) Asymptotic 

Iteration Method and can be applicated exactly in the different problem if the wave function has been 

known and fulfill boundary condition zero (0) and infinity (∞). 

Equation (7) can be simple itterated until (k+1) and (k+2), k = 1, 2, 3, ... and then we get 
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Which is called recurrence relation. To determine the energy eigenvalues, we use quantization 

condition given by following equation 

 
1 1( ) ( ) ( ) ( ) ( ) 0k k k k kx x s x x s x        (15) 

With the iteration number k  is define as 1, 2, 3, ...k  . The wave function can be determined 

using the wave function equation as follows 
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4.  Results and Discussion 

Substituting equations (1, 2 – 5) into equation (6) we obtain 
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Where 1D   is the separation constant with 1 ( 2)D l l D      and D  is the dimension. Equation 

(17) can be simplify as 
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By setting the part of equation (18), 
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Then equation (18) become 
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By using Frobenius method, we let ( ) s n

nF r r C r  . The equation (22) has an irregular singularity 

r  , where the normalized solution is ( ) sE r
F r e


. When it has the singularity 0r  , the

1( ) AF r r 
. To make equation (22) into form of equation (7), the wave function is set as follows 
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Substitute equation (23) into equation (22), we get 
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Equation (24) is the homogeneous linear differential equation in second-order form. It can be solve 

by using AIM. By comparing equation (24) with equation (7), then we can get 0 ( )r , and 0 ( )s r . The 

( )k r , and ( )ks r  can be calculated as follows 
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From equations (12 – 14, 25), we found the general eigenvalue of equation (24) in general term as 

follows 
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Where n   is quantum number with 0,1,2,n  . By substituting equation (19-21) to equation (26), 

the relativistic energy equation become 
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With 1V  and 2V  are the potential parameters where 1 2 eV D a  and 
2

2 eV D a . Where eD   and a  

are the dissociation energy and the equilibrium internuclear separation. For the Kratzer potential, when 

0r   then the potential ( )V r   because there is internuclear repulsion. When r   then  the 

potential ( ) 0V r  , i.e., the molecule decomposes [20] .  

Table 1. Various diatomic molecules reduced mass and spectroscopic properties in ground 

state.[20],[21] 

Parameter CO  NO  2O  2I  

 (eV)eD  10.84514471 8.043782568 5.156658828 1.581791863 

 ( )Åa  1.1282 1.1508 1.208 2.662 

 (amu)M   6.860586000 7.468441000 7.997457504 63.45223502 

 

Table 1. presents the parameters for the potential. The potential parameter must be convert to 

natural unit where 1c  . The a  and M units are converted to 1 eV  and eV due to the natural 

units. The relativistic energies value were calculated numerically from equation (27) by using Matlab. 

The results can be seen in Table 2. 
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Table 2. The relativistic energy nE  in (GeV)  with 1l   

D  n  CO  NO  2O  2I  
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From Table 2., it is shown that the relativistic energy value is decreasing due to the increase of 

quantum number n . For higher dimension, the energy value is decreasing too. The relativistic energies 

for diatomic molecules of CO , NO , 2O , and 2I  are negative. The wave functions were determined 

using equation (16). And the graph of the wave function for 2O  particle are shown in Figure 1.  
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(b) 
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Figure 1. Four dimensional radial wave functions of 2O  with 1l   (a) 0n  , (b) 1n  , and  

(c) 2n    
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5.  Conclusion 

The bound-state energy eigenvalues of Klein-Gordon equation for Kratzer potential in D-dimension 

were obtained via asymptotic iteration method. From the results can be concluded that the relativistic 

energy value is decreasing due to the increase of quantum number n . For higher dimension, the 

energy value is decreasing. The energy of diatomic molecules ofCO , NO , 2O , and 2I are negative.  
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