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Abstract. Stroke is one of cerebrovascular diseases caused by the obstruction of blood flow to 

the brain. Stroke becomes the leading cause of death in Indonesia and the second in the world. 

Stroke also causes of the disability. Ischemic stroke accounts for most of all stroke cases. 

Obstruction of blood flow can cause tissue damage which results the electrical changes in the 

brain that can be observed through the electroencephalogram (EEG). In this study, we presented 

the results of automatic detection of ischemic stroke and normal subjects based on the scaling 

exponent EEG obtained through detrended fluctuation analysis (DFA) using extreme learning 

machine (ELM) as the classifier. The signal processing was performed with 18 channels of EEG 

in the range of 0-30 Hz. Scaling exponents of the subjects were used as the input for ELM to 

classify the ischemic stroke. The performance of detection was observed by the value of 

accuracy, sensitivity and specificity. The result showed, performance of the proposed method to 

classify the ischemic stroke was 84 % for accuracy, 82 % for sensitivity and 87 % for specificity 

with 120 hidden neurons and sine as the activation function of ELM. 

1. Introduction 

Stroke is one of cerebrovascular diseases which are caused by obstruction of blood flow to the brain [1]. 

The obstruction causes brain tissue damage. Based on data from WHO in 2012, stroke is the first leading 

cause of death in Indonesia and the second leading cause in the world [2]. Cardiovascular disease, stroke, 

and diabetes had become the biggest cause of disability in Indonesia [3] and in some developed 

countries. Ischemic stroke accounts for most of all stroke cases, up to 87% [4]. Computed Tomography 

(CT)-Scan was often used to support the diagnosis of stroke. While in ischemic stroke has been 

established that Diffused / Perfusion-Weighted (D/P-W) MRI as the gold standard in the examination 

of ischemic stroke [5]. D/P-W MRI is expensive and has limited availability [6]. However, CT scan or 

MRI, included D/P-W MRI, may take several hours to obtain examination reports while the initial aid 

is quite limited period for stroke patients [7].  

 Electroencephalography is a method to record electrical activity of the brain. Nowadays, 

electroencephalography widely used for evaluation of seizures and epilepsy [8]. In ischemic stroke, the 

role of electroencephalography as an indicator of disturbed function (locally, regionally, or diffusely) in 

the event of stroke has not always been duly appreciated [9] especially when CT-Scan and MRI is 

available. As outlined before that CT-Scan and MRI has limited availability, many research tried to 

1

ScieTech                                                                                                                                               IOP Publishing
IOP Conf. Series: Journal of Physics: Conf. Series 820 (2017) 012005         doi:10.1088/1742-6596/820/1/012005

International Conference on Recent Trends in Physics 2016 (ICRTP2016) IOP Publishing
Journal of Physics: Conference Series 755 (2016) 011001 doi:10.1088/1742-6596/755/1/011001

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd



 

 

 

 

 

 

optimize electroencephalography in ischemic stroke detection. Electroencephalography offers a cheaper 

cost, widely available [10], continuous monitoring [11] and good temporal resolution [12]. Some of the 

advantages are the basis for optimizing electroencephalography to detect acute ischemic stroke [13]. 

Tissue damage in ischemic stroke patients causes the changes in electrical activity of brain. Those 

changes can be known through EEG power [14], variability [15, 16] and functional connectivity of the 

cortex [17]. Detrended fluctuations analysis (DFA) is one of method for analysing variability of EEG. 

The result of the DFA is the fluctuation of the EEG indicated by the scaling exponents.  

Automatic detection is a technique to analyse signal quantitatively using a computer. Automatic 

detection offers great promise to assist in interpretation of EEG studies [18]. In automatic detection, 

there are two main considerations they are feature extraction techniques and classification techniques. 

Machine learning method is commonly applied in classification problem. Machine learning method 

based on artificial neural networks were applied in stroke classification problems such as extreme 

learning machine (ELM) [19] and 1D convolutional neural network (1DCNN) [20]. In this study, we 

presented the result of automatic detection of ischemic stroke based on the scaling exponent of EEG 

using ELM. 

2. Material and methods 

2.1. Data collection 

This study was conducted and approved by the Ethics Committees of National Centre for Brain Hospital 

(RS PON), Jakarta. Until this study was conducted we obtain data from 31 ischemic stroke patients (age 

57,6 ± 7,9 years) and 30 normal subjects (age 54,2 ± 8,1 years). The number of normal subjects selected 

to balance with the amount of ischemic stroke patients data. The EEG recording was conducted for 30 

minutes with 32 channels and the electrode were placed with 10-20 international system. The recording 

was performed using Biologic System and Xltek Netlink EEG 32U with sampling frequency is 256 and 

512 Hz and stored in a file in the format of edf (European Data Format). 

2.2. Proposed method 

The proposed method shows in figure 1. It consists of two stages namely training and testing stages. The 

method starts from edf file acquisition, to be read as the EEG data. Then, it is followed by the pre-

processing; selecting 18 channels of EEG (FP1, F3, F7, C3, T3, P3, T5, T1, O1, FP2, F4, F8, C4, T4, 

P4, T6, T2 and O2) and bandpass filter the signal in the main frequencies of interest between 0-30 Hz. 

Channels are selected by the availability of its pair in both hemispheres. The purpose of feature 

extraction is to get the features of EEG, there are 36 scaling exponents obtained using DFA, two 

moments and two normalized moments. These features are used as input for ELM algorithm. As outlined 

before, system divided into two stages there are training and testing. Training stage is intended to get 

the optimum parameters (input weights, bias hidden neurons and output weights) for the classification. 

Meanwhile, testing stage is intended to validate the performance of ELM, with parameter  

 

 

 

Figure 1. Block diagram of proposed method 
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was obtained from training stage, as a classifier. Performance of the proposed method were performed 

using the K-fold cross validation where K = 10. Performance of detection was evaluated based on 

accuracy, sensitivity and specificity. 

2.3. Detrended fluctuations analysis 

DFA is one of method to analyse the variability of a biomedical signal [21]. DFA is represented by two 

scaling exponent (α1 and α2) [15]. Scaling exponent is used as an indicator of EEG fluctuations that 

obtained from the slope of a line formed on plots of ln (F(k)) versus ln (k). In the spatial domain, the 

moments of the distributions of α1 and α2 summarize the mean and variability across the scalp[15]. 

Application of DFA with normalize moment follows: 

 

i) Divide the EEG signal, x(t), into B segment with k data point where 1 ≤ t ≤ T and T is the number of 

data points. Floor is function to round the value of (T/B) to nearest integer less than or equal. k 

obtained using equation (1). 

 

𝑘 = 𝑓𝑙𝑜𝑜𝑟 (𝑇/𝐵)     (1) 

 

ii) Get the trend of signal x(t) on the segment b, 𝑥̅𝑏(𝑡), equation (2). Linear-fit is function to get linear 

line with one independent and one dependent variable from a group of data point in segment b. 

 

𝑥̅𝑏(𝑡) = 𝑙𝑖𝑛𝑒𝑎𝑟 − 𝑓𝑖𝑡 [𝑥(𝑡)] ;    (b-1) k < t < bk   (2) 

 

iii) Calculate the average fluctuation x(t) using equation (3). 

 

𝐹2(𝑘) =
1

𝑘𝐵
∑ [𝑥(𝑡) − 𝑥̅𝑏(𝑡)]

2𝑘𝐵
𝑡=1    (3) 

 

iv) Get the scaling exponent using equation (4), where i is the order of the scaling exponent, q is a 

positive integer and N is the number of EEG channel. Then, calculate the moment of the scaling 

exponent, 𝐺(𝑖), using equation (5). 

 

ln (𝐹(𝑘)) ∝  𝛼 ln (𝑘)     (4) 

 

𝐺𝑞
(𝑖)

= 
1

𝑁
∑ 𝛼𝑖,𝑗

𝑞𝑁
𝑗=1      (5) 

 

v) Calculate normalized moments, 𝑀𝑞
(𝑖)

, using equation (6). 

 

𝑀𝑞
(𝑖)

= 
𝐺𝑞

(𝑖)

(𝐺1
(𝑖)

)
𝑞     (6) 

2.4. Extreme learning machine 

Extreme Learning Machine (ELM) was propounded for single layer hidden feedforward neural networks 

(SLFNs). ELM has good generalization ability, quick to perform learning and a simple structure [22]. 

ELM architecture consists of input layer, hidden layer and output layer. Weights input (wnk) connecting 

n-th node in the input layer and the node-k in the hidden layer. While the weights output (βk) connecting 

node-k in the hidden layer and output layer. For each sample of training data (xi, ti) where xi is the value 

at the input node and ti is the expected target of a sample. Activation function, g(x), in the standard 

SLFNs with K hidden node is modelled in equation (7), where bj is a bias in the k-th hidden neuron. 

Equation (8) is used to obtain the target value where the input weights and biases hidden neurons 

randomly determined. Output weights, β, modelled on the equation (10), 𝐻† is the Moore-Penrose's 

generalized inverse matrix of the matrix H. 
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In artificial neural network, a parameter in the hidden layer neurons to calculate the value from input 

layer is called activation function. Thus g(x) on ELM will be recalculated using this activation function 

to pass the value to the output layer. Some activation functions which are often used in the artificial 

neural network are sigmoid, sine and radial basis. The activation function and the number of neurons in 

the hidden layer will affect the performance of ELM. 

 

∑ 𝛽𝑗𝑔(𝑤𝑗𝑘 ∙ 𝑥𝑛 + 𝑏𝑗) = 𝑡𝑛
𝐾
𝑗=1      (7) 

 

𝐻𝛽 = 𝑇      (8) 

where:  

 

 𝐻(𝑤1, … , 𝑤𝐾 , 𝑏𝑖 , … , 𝑏𝐾 , 𝑥1, … , 𝑥𝑀) = [
𝑔(𝑤1 ∙ 𝑥1 + 𝑏1) ⋯ 𝑔(𝑤𝐾 ∙ 𝑥1 + 𝑏𝐾)

⋮ ⋯ ⋮
𝑔(𝑤1 ∙ 𝑥𝑀 + 𝑏1) ⋯ 𝑔(𝑤𝐾 ∙ 𝑥𝑀 + 𝑏𝐾)

] ;  (9) 

 

𝜷 =   

[
 
 
 
𝛽1

𝑇

𝛽2
𝑇

⋮
𝛽𝐾

𝑇]
 
 
 

𝐾×𝑙

, 𝑻 =

[
 
 
 
𝑡1
𝑇

𝑡2
𝑇

⋮
𝑡𝐾
𝑇]
 
 
 

𝑀×𝑙

 

 

𝛽 = 𝐻†𝑇     (10) 

2.5. Evaluation Matrices 

To evaluate the performance of detection, we used the value of accuracy, sensitivity and specificity [23]. 

Accuracy or success rate of detection is obtained using equation (11), where false positive (FP) is the 

number the illness subject detected as the normal subjects, false negative (FN) is the number normal 

subjects detected as the illness subject. Sensitivity or true positive (TP) rate is used to measure the ability 

of detecting the illness subjects as correctly the illness subjects. Sensitivity is obtained using equation 

(12). Specificity or true negative (TN) rate is used to measure the ability of detecting the normal subjects 

as correctly the normal subjects. Specificity was obtained using the equation (13). 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
    (11) 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
    (12) 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
    (13) 

 

3. Experiment results and discussion 

3.1. Scaling exponent analysis 

In this study, we used two parameters k on DFA, because the data has two sampling frequency. The 

range 3 ≤ k ≤ 500 was applied to data with sampling frequency of 256 Hz and 6 ≤ k ≤ 1000 was applied 

to data with sampling frequency of 512 Hz. Two scaling exponents are obtained from the slope of a line 

formed on plots of ln (F(k)) versus ln (k) from two regions. First region, to obtained α1, located between 

1 < ln (k) < 3.5 for data with sampling frequency 512 Hz and 1 < ln (k) < 3 for data with sampling 

frequency 256 Hz. Second region, to obtained α2, is located between 4.45 < ln (k) < 5.5 for both data.  

Figure 2 shows the scatter plot of the moment of scaling exponents (𝐺2
(1)

 and 𝐺2
(2)

) in ischemic stroke 

patients and normal subjects. The results showed that ischemic stroke patients generally have 𝐺2
(1)

 and 
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𝐺2
(2)

 higher than the normal subject, table 1, and there is correspond to the previous study in [7]. Figure 

2 shows that moment of scaling exponent cannot distinguish normal subject and ischemic stroke patient 

clearly. In [7], normalize moment of scaling exponent can distinguish ischemic stroke patients and 

normal subjects clearly and shows that ischemic stroke patient have lower normalize moment than 

normal subject. The result of normalize moment 𝑀2
(1)

and 𝑀2
(2)

 in this study, figure 3, shows that 

normalize moment still cannot be distinguish between normal subject and ischemic stroke patients 

clearly. Normal subjects have similar average normalize moment with ischemic stroke but ischemic 

stroke patients have higher value of standard deviation, table 1. The result also corresponded to the other 

previous study [24] which generally indicates the acute stroke thalamic ischemic patient has a higher 

EEG complexity than the normal subjects. 

 

 

Figure 2. Moment (𝐺2
(1)

and 𝐺2
(2)

) plot for ischemic stroke patients and normal 

subjects. 

 

 

 

Figure 3. Normalize moment (𝑀2
(1)

 and 𝑀2
(2)

) plot for ischemic stroke patients and 

normal subjects. 
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Figure 4. Accuracy of the system using scaling exponent features in testing stage. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2. Feature and performance analysis 

In this study, we divided the features into two groups of features they are scaling exponent features and 

combined features. The group of scaling exponent features consists of 36 scaling exponents from 18 

channels of EEG. Meanwhile, the combined features are the combination of 𝐺2
(1)

, 𝐺2
(2)

, 𝑀2
(1)

, 𝑀2
(2)

and 

scaling exponent features and will be consist 40 value for each subject. Experiments in those features 
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Table 1. Average moment and normalized moment for each scaling exponent. 

Subject 𝐺2
(1)

 𝐺2
(2)

 𝑀2
(1)

 𝑀2
(2)

 

Normal 1.59 ± 0.06 0.17 ± 0.07 1.00 ± 0.00 1.17 ± 0.15 

Stroke 1.64 ± 0.08 0.22 ± 0.14 1.00 ± 0.00 1.17 ± 0.16 

 

Figure 5. Accuracy of the system using combined features in testing stage. 
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was conducted using three parameters of activation function (sigmoid, sine and radial basis) and the 

number of neurons in the hidden layer were varied. The application of some parameter settings is 

intended to get the optimum settings in detection. Accuracy used as main parameter to measure 

performance of proposed method.  

The accuracy of this experiments with some parameter settings, in best case, are presented in figure 

4 and 5. The results obtained in testing stage shows that the addition of neurons in hidden layer was not 

always followed by the increase of ELM performance. Experiments using three activation function 

showed, no activation function is dominant over the others. It is showed that in scaling feature using 

sine activation function get the best accuracy, but in combined feature the best accuracy showed with 

sigmoid activation function. 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

Table 2.  Best performance for each group of features and functions activation in testing stage. 

Parameters 

Scaling exponent feature Combined feature 

Sigmoid Sine 

Radial 

Basis Sigmoid Sine 

Radial 

Basis 

 Accuracy 0.81± 0.05 0.84 ± 0.12* 0.80± 0.14 0.81 ± 0.13 0.80 ± 0.08 0.77 ± 0.10 

Sensitivity 0.70± 0.18 0.82 ± 0.17 0.68± 0.24 0.70 ± 0.30 0.88 ± 0.16 0.68± 0.24 

Specificity 0.93 ± 0.15 0.87± 0.30 0.93± 0.15 0.93 ± 0.15 0.73 ± 0.28 0.87 ± 0.18 

*Optimum parameter settings. 

Table 3.  Best performance for each optimum parameter in the training stage. 

Parameters 

Scaling Feature Combined Feature 

Sigmoid Sine 

Radial 

Basis Sigmoid Sine 

Radial 

Basis 

 Accuracy 1 1 1 1 1 1 

Sensitivity 1 1 1 1 1 1 

Specificity 1 1 1 1 1 1 

 

Figure 6. Accuracy using scaling exponent features in training stage. 
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Table 2 shows the summary of the best performance in testing stage obtained from several 

experiments in this study. The optimum parameters in this study was obtained with 84% as the highest 

accuracy using sine activation function, 120 neurons and scaling exponent features. These parameter 

settings gave the performance 82% for sensitivity and 87% for specificity in testing stage. The system 

performance indicates that the proposed method performed better to detect the normal subject than 

ischemic stroke patient. The reason for this situation might be because in this study there were several 

ischemic stroke patients in the mild ischemic stroke (NIHSS ≤ 4) thus more difficult to distinguish from 

normal subjects. Table 3 shows the summary of performance in the training stage by the same 

parameters with table 2. In the previous discussion, has been outlined that the addition of neurons is not 

always followed by the increase of accuracy in testing stage, but in this training stage, the addition of 

neurons was able to improve training accuracy as shown in figure 6. To reach 100 % accuracy in the 

training stage the ELM need minimum 45 neurons in the hidden layer. In the training stage, 100 % 

accuracy can be interpreted that the ELM was able to form a good classification model. 

4. Conclusion 
The results of this study shows EEG in the ischemic stroke subjects have a higher scaling exponent than 

the normal subjects. The best performance was achieved for the detection using sine activation function, 

120 neurons and scaling exponent features as the parameters. Using these parameters, we obtained 84% 

for accuracy, 82% for sensitivity and 87% of specificity. In our future work, we will further explore 

other method of feature extraction and classifier to optimize and get better ischemic stroke detection 

system. 
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