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Abstract. In the paper, we consider the λ-model with spin values {1, 2, 3} on the Cayley tree
of order two. We describe ground states of the model.

1. Introduction
The choice of Hamiltonian for concrete systems of interacting particles represents an important
problem of equilibrium statistical mechanics [1]. The matter is that, in considering concrete
real systems with many (in abstraction, infinitely many) degrees of freedom, it is impossible
to account for all properties of such a system without exceptions. The main problem consists
in accounting only for the most important features of the system, consciously removing the
other particularities. On the other hand, the main purpose of equilibrium statistical mechanics
consists in describing all limit Gibbs distributions corresponding to a given Hamiltonian [5]. This
problem is completely solved only in some comparatively simple cases. In particular, if there are
only binary interactions in the system then problem of describing the limit Gibbs distributions
simplifies. One of the important models in statistical mechanics is Potts models. These models
describe a special and easily defined class of statistical mechanics models. Nevertheless, they
are richly structured enough to illustrate almost every conceivable nuance of the subject. In
particular, they are at the center of the most recent explosion of interest generated by the
confluence of conformal field theory, percolation theory, knot theory, quantum groups and
integrable systems [6, 10]. The Potts model [14] was introduced as a generalization of the
Ising model to more than two components. At present the Potts model encompasses a number
of problems in statistical physics (see, e.g. [18]). Investigations of phase transitions of spin
models on hierarchical lattices showed that they make the exact calculation of various physical
quantities [2, 11, 12]. Such studies on the hierarchical lattices begun with development of the
Migdal-Kadanoff renormalization group method where the lattices emerged as approximants of
the ordinary crystal ones. In [13] the phase diagrams of the q-state Potts models on the Bethe
lattices were studied and the pure phases of the the ferromagnetic Potts model were found. In
[3, 4, 9] using those results, uncountable number of the pure phase of the 3-state Potts model
were constructed. These investigations were based on a measure-theoretic approach developed
in [15, 11]. The structure of the Gibbs measures of the Potts models has been investigated in
[3].
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Figure 1. The first levels of Γ2
+

It is natural to consider a model which is more complicated than Potts one, in [7] we proposed
to study so-called λ-model on the Cayley tree (see also [16, 17]). In the mentioned paper, for
special kind of λ-model, its disordered phase is studied (see [8]) and some its algebraic properties
are investigated. In the present, we consider symmetric λ-model with spin values {1, 2, 3} on
the Cayley tree of order two. This model is much more general than Potts model, and exhibits
interesting structure of ground states. We describe ground states of the model which will open
new insight to the structure of the Gibbs measures of the model. Moreover, out results will
allow to find Gibbs measures by means of counter methods for the λ-model on the Cayley tree
(see [17] for more details).

2. Preliminaries
Let Γk

+ = (V, L) be a semi-infinite Cayley tree of order k ≥ 1 with the root x0 (whose each
vertex has exactly k + 1 edges, except for the root x0, which has k edges). Here V is the
set of vertices and L is the set of edges. The vertices x and y are called nearest neighbors
and they are denoted by l = ⟨x, y⟩ if there exists an edge connecting them. A collection of
the pairs ⟨x, x1⟩, . . . , ⟨xd−1, y⟩ is called a path from the point x to the point y. The distance
d(x, y), x, y ∈ V , on the Cayley tree, is the length of the shortest path from x to y.

Wn =
{
x ∈ V | d(x, x0) = n

}
, Vn =

n∪
m=1

Wm, Ln = {l =< x, y >∈ L | x, y ∈ Vn} .

The set of direct successors of x is defined by

S(x) = {y ∈ Wn+1 : d(x, y) = 1} , x ∈ Wn.

Observe that any vertex x ̸= x0 has k direct successors and x0 has k + 1.
Now we are going to introduce a coordinate structure in Γk

+. Every vertex x (except for x0)

of Γk
+ has coordinates (i1, . . . , in), here im ∈ {1, . . . , k}, 1 ≤ m ≤ n and for the vertex x0 we put

(0) (see Figure 1). Namely, the symbol (0) constitutes level 0 and the sites i1, . . . , in form level n
of the lattice. In this notation for x ∈ Γk

+, x = {i1, . . . , in} we have S(x) = {(x, i) : 1 ≤ i ≤ k},
here (x, i) means that (i1, . . . , in, i).

Let us define on Γk
+ a binary operation ◦ : Γk

+ × Γk
+ → Γk

+ as follows, for any two elements
x = (i1, . . . , in) and y = (j1, . . . , jm) put

x ◦ y = (i1, . . . , in) ◦ (j1, . . . , jm) = (i1, . . . , in, j1, . . . , jm)

and
y ◦ x = (j1, . . . , jm) ◦ (i1, . . . , in) = (j1, . . . , jm, i1, . . . , in).
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By means of the defined operation Γk
+ becomes a noncommutative semigroup with a unit. Using

this semigroup structure one defines translations τg : Γk
+ → Γk

+, g ∈ Γk by

τg(x) = g ◦ x.

Let G ⊂ Γk
+ be a sub-semigroup of Γk

+ and h : V → R be a function. We say that h is a

G-periodic if h(τg(x)) = h(x) for all x ∈ V ,g ∈ G and l ∈ L. Any Γk
+-periodic function is called

translation-invariant. Put

Gm =
{
x ∈ Γk

+ : d(x, x0) ≡ 0(mod m)
}
, m ≥ 2.

One can check that Gm is a sub-semigroup with a unit.
In this paper, we consider the models where the spin takes values in the set Φ = {1, 2, . . . , q}

and is assigned to the vertices of the tree. A configuration σ on V is then defined as a function

x ∈ V → σ(x) ∈ Φ; the set of all configurations coincides with Ω = ΦΓk
. The Hamiltonian the

λ-model has the following form

H(σ) =
∑

<x,y>∈L
λ(σ(x), σ(y)) (1)

where the sum is taken over all pairs of nearest-neighbor vertices ⟨x, y⟩, σ ∈ Ω. From a physical
point of view the interactions between particles do not depend on their locations, therefore from
now on we will assume that λ is a symmetric function, i.e. λ(u, v) = λ(v, u) for all u, v ∈ R.

We note that λ-model of this type can be considered as generalization of the Potts model.
The Potts model corresponds to the choice λ(x, y) = −Jδxy, where x, y, J ∈ R.

In what follows, we restrict ourself to the case k = 2 and Φ = {1, 2, 3}, and for the sake of
simplicity, we consider the following function:

λ(i, j) =


a , if |i− j| = 2,

b , if |i− j| = 1,
c , if i = j,

(2)

where a, b, c ∈ R for some given numbers.

Remark 2.1. We point out the considered model is more general then well-known Potts model
[18], since if a = b = 0, c ̸= 0, then this model reduces to the mentioned model.

3. Ground States
In this section, we describe ground state of the λ-model on a Cayley tree. For a pair of
configurations σ and φ coinciding almost everywhere, i.e., everywhere except finitely many
points, we consider the relative Hamiltonian H(σ, φ) determining the energy differences of the
configurations σ and φ:

H(σ, φ) =
∑

<x,y>
x,y∈V

(λ(σ(x), σ(y))− λ(φ(x), φ(y))) (3)

For each x ∈ V , the set {x, S(x)} is called a ball, and it is denoted by bx. The set of all balls
we denote by M .

We define the energy of the configuration σb on b as follows

U(σb) =
1

2

∑
<x,y>
x,y∈V

(λ(σ(x), σ(y)))

From (3), we got the following lemma.
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Lemma 3.1. The relative Hamiltonian (3) has the form

H(σ, φ) =
∑
b∈M

(U(σb)− U(φb)).

Lemma 3.2. The inclusion

U(φb) ∈
{
α+ β

2
: ∀α, β ∈ {a, b, c}

}
(4)

holds for every configuration φb on b (b ∈ M).

A configuration φ is called a ground state of the relative Hamiltonian H if

U(φb) = min

{
α+ β

2
: ∀α, β ∈ {a, b, c}

}
(5)

for any b ∈ M
For any configuration σb, we have

U(σb) ∈ {U1, U2, U3, U4, U5, U6},

where

U1 = a , U2 = (a+ b)/2 , U3 = (a+ c)/2,

U4 = b , U5 = (b+ c)/2 , U6 = c. (6)

We denote

Am =
{
(a, b, c) ∈ R3| Um = min

1≤k≤6
{Uk}

}
(7)

Using (7), we obtain

A1 =
{
(a, b, c) ∈ R3| a ≤ b, a ≤ c

}
, A2 =

{
(a, b, c) ∈ R3| a = b ≤ c

}
,

A3 =
{
(a, b, c) ∈ R3| a = c,≤ b

}
, A4 =

{
(a, b, c) ∈ R3| b ≤ a, b ≤ c

}
,

A5 =
{
(a, b, c) ∈ R3| b = c ≤ a

}
, A6 =

{
(a, b, c) ∈ R3| c ≤ a, c ≤ b

}
.

Now, we want to find ground states for each considered cases. To do so, we introduce
some notation. For each sequence {k0, k1, . . . , kn, . . . }, kn ∈ {1, 2, 3}, n ∈ N ∪ {0}, we define a
configuration σ on Ω by

σ(x) = kℓ, if x ∈ Wℓ , ℓ ≥ 0.

This configuration is denoted by σ[kn].
If the sequence {k0, k1, . . . , kn, . . . } is n-periodic,(i.e. kℓ+n = kℓ, ∀n ∈ N), then instead of

{k0, k1, . . . , kn, . . . }, we write {k0, k1, . . . , kn−1}. Correspondingly, the associated configuration
is denoted by σ[k0,k1,...,kn−1]

Theoram 3.3. Let (a, b, c) ∈ A1, then there are only two G2-periodic ground states.
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Figure 2. Configuration for σ[kn]

Figure 3. Configurations for A1

Figure 4. Configuration for σ
(2)
1

Proof. Let (a, b, c) ∈ A1, then one can see that for this triple, the minimal value is a, which is
achieved by the configuration on b, given in Figure 3.

5

37th International Conference on Quantum Probability and Related Topics (QP37)                         IOP Publishing
IOP Conf. Series: Journal of Physics: Conf. Series 819 (2017) 012020         doi:10.1088/1742-6596/819/1/012020



Now using Figure 3, for each n ∈ N, one can construct configurations on Ω defined by:

σ
(2)
1 = σ[1,3], σ

(2)
2 = σ[3,1].

Then, we can see that for any b ∈ M , one has

U(σ
(2)
b1,2

) = min
1≤k≤6

{Uk}

which means σ
(2)
1,2 is a ground state. Moreover, σ

(2)
1,2 is G2-periodic. Note that all ground states

will coincide with these ones.

Theoram 3.4. Let (a, b, c) ∈ A2, then the following statements hold:

(i) for every n ∈ N, there is Gn-periodic ground state;

(ii) there is uncountable number of ground states.

Proof. Let (a, b, c) ∈ A2, then one can see that for this triple, the minimal value is (a + b)/2,
which is achieved by the configurations on b given in Figure 5. (i) Now using Figure 5, for each

Figure 5. Configurations for A2

n ∈ N, one can construct configurations on Ω defined by

σ(2n) = σ[1, (2, 3), . . . , (2, 3), 2]︸ ︷︷ ︸
2n

,

σ(2n+1) = σ[1, (2, 3), . . . , (2, 3)]︸ ︷︷ ︸
2n+1

.

Then, we can see that for any b ∈ M , one has

U(σ(ξ)) = min
1≤k≤6

{Uk}, ξ ∈ {2n, 2n+ 1}
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Figure 6. Configuration for σ(2)

which means σ(n) is a Gn-periodic ground state.
(ii) To construct uncountable number of ground states, we consider the set

Σ1,2,3 =
{
(tn)|tn ∈ {1, 2, 3}, δ{tn,tn+1} = 0, n ∈ N

}
(8)

where δ is the Kroneker delta. One can see that the set Σ1,2,3 is uncountable. Take any
t = (tn) ∈ Σ1,2,3. Let us construct a configuration by

σ(t) =

{
1, x = (0),
tk, x ∈ Wk, k ∈ V.

One can check that σ(t) is a ground state, and the correspondence t ∈ Σ1,2,3 → σ(t) shows that

the set {σ(t), t ∈ Σ1,2,3} is uncountable. This completes the proof.

Using the same argument as above we can prove the following results.

Theoram 3.5. The following statements hold:

(I) if (a, b, c) ∈ A3, then there are three translation-invariant ground states and for every n ∈ N,
one can find Gn-periodic ground states;

(II) if (a, b, c) ∈ A4, then for every n ∈ N, there is a G(3n+1)-periodic ground state;

(III) if (a, b, c) ∈ A5, then there are three translation-invariant ground states and there is
uncountable number of ground states;

(IV) if (a, b, c) ∈ A6, then there are only three transition-invariant ground states.
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Figure 7. Configuration for σ(t)
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