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Abstract. Let Xk be the space of analytic, critical circle homeomorphisms with an irrational
rotation number ρk = [k, k, ..., k, ...]. It is shown [S. Ostlund, D. Rand, J. Sethna and E. Siggia,
Physica D,8 (1983) 303] that, the renormalization operator R defined on Xk has a unique fixed
point T0. In this paper, we study the properties of orbits of a critical point and build a potential
for T0.

1. Introduction and results
Historically, ergodic theory was a branch of thermodynamics and statistical mechanics.
Although we will not describe the precise relationships between thermodynamics and ergodic
theory (see Ruelles book [10] in the references for this), the connections motivate several
interesting constructions which turn out to have much wider applications. This is the heart
of thermodynamic formalism.

The introduction of thermodynamic formalism within the mathematical field of dynamical
systems occurred in the 1970s, and was primarily due to Y. Sinai, D. Ruelle and R. Bowen. In
this paper we build the thermodynamic formalism for the circle maps with a critical point. The
thermodynamic formalism for the unimodal Feigenbaum map was built by E. Vul, Y. Sinai and
K. Khanin [1]. In fact, our work is an analogy of their work for the critical circle maps.

Let us define a set of real-analytic commuting pairs that corresponds to a set of real-analytic
critical circle homeomorphisms the order of three. To do this, consider the pairs (ξ, η) satisfying
the following conditions:

(a) both ξ and η are real-analytic, strictly increasing on [η(0), 0) and [0, ξ(0)) respectively and
ξ(0) = η(0) + 1;

(b) ξ and η commute at zero, that is η(ξ(0)) = ξ(η(0));

(c) both ξ and η has the cubic critical point at zero, that is ξ′(0) = η′(0) = ξ′′(0) = η′′(0) = 0,
ξ′′′(0), η′′(0) are non zero;

(d) (η(ξ))′′′(0) = (ξ(η))′′′(0).

The pair (ξ, η) is called the critical commuting pair (shortly commuting pair). A commuting
pair is called non-generated if 0 < ξ(0) < 1. For a non-generated commuting pair (ξ, η) we define
its the height h(ξ, η) ∈ N0 ∪ {∞} as m if

ξ(η(0)) < 0, ξ2(η(0)) < 0, ..., ξm−1(η(0)) < 0, ξm(η(0)) > 0
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and h(ξ, η) =∞ if no such m exists (note that in this case the map ξ has a fixed point) where
ξi is the ith iteration of ξ. A non-generated commuting pair (ξ, η) is called renormalizable if its
height in finite and nonzero. Denote by X the set of all renormalizable commuting pairs. On X
we define a renormalization operator R as follows

R(ξ, η) =
(
αm ◦ ξm−1 ◦ η ◦ α−1

m , αm ◦ ξm−1 ◦ η ◦ ξ ◦ α−1
m

)
where αm(z) =

(
ξm−1(η(0))− ξm(η(0))

)−1
(z). A commuting (ξ, η) ∈ X is called infinitely-

renormalizable if Rn−1(ξ, η) is renormalizable for all n ∈ N0. For a infinitely-renormalizable
commuting (ξ, η) we define its rotation number ρ(ξ, η) ∈ [0, 1), by substituting its consecutive
heights for partial quotients in the continued fractions expansion ρ(ξ, η) = [m1,m2, ...,mn, ...]
where mn is the height of Rn−1(ξ, η). Actually, the rotation number ρ(ξ, η) of the pair (ξ, η) can
be defined by dynamical approach as follows. Let Tξ,η be a circle homeomorphism generated by
(ξ, η) defined on the unit circle [η(0), ξ(0)) as follows

Tξ,η(x) =

{
ξ(x), if x ∈ [η(0), 0),
η(x), if x ∈ [0, ξ(0)).

(1.1)

One can easily check that the homeomorphism Tξ,η is an analytic circle homeomorphism and has
the cubic critical point at zero. It is well known since Poincaré (1885), that the orbit structure
of Tξ,η is determined by some irrational constant ρ(Tξ,η) so called the rotation number of Tξ,η, in

the following sense: for any point x of the circle, the mapping T jξ,η(x)→ jρ(Tξ,η) mod 1, j ∈ Z
is orientation-preserving. One can easily verify that ρ(Tξ,η) = ρ(ξ, η).

Further, consider the infinitely-renormalizable commuting pairs (ξ, η) whose the rotations
numbers ρ(ξ, η) equal to ρk = [k, k, ..., k, ...] for some k ≥ 1. The set of all such commuting pairs
is denoted by Xk. R. Ostlund et. al [9] proved that the renormalization operator R acting on
Xk has the unique fixed point (ξ0, η0). Let us recall the following definition.

Definition 1.1. Two orientation-preserving circle homeomorphisms T1 and T2 are said to be
Cr conjugate, r ≥ 1, if there exists an orientation-preserving circle homeomorphism H ∈ Cr(S1)
(if r ≥ 1, then it is required that H−1 ∈ Cr(S1) such that

H ◦ T1 = T2 ◦H.

Denote by E(T0) the set of all circle homeomorphisms whose are C1 conjugated with Tk
and defined on the standard circle S1. It is well known (see [3]) that any two topological
conjugated homeomorphisms have same rotation number. Therefore, the rotation numbers of
homeomorphisms of E(T0) are the same and equal to ρk.

The purpose of this paper is to build thermodynamic formalism for the set E(T0). To
formulate our main result, we introduce further notations. Let

pn
qn

= [k, k, ..., k]︸ ︷︷ ︸
n times

be the sequence of rational convergents of the continued fraction ρk = [k, k, ..., k, ...]. The coprime
numbers pn and qn satisfy the recurrence relations pn = kpn−1+pn−2 and qn = kqn−1+ qn−2 for
n ≥ 1, where, for convenience we set p0 = 0, q0 = 1 and p−1 = 1, q−1 = 0. Taking the critical
point x0 = 0, we define the nth fundamental segment In0 := In0 (x0) as the circle arc [x0, T

qn
0 (x0)]

if n is even and [T qn0 (x0), x0] if n is odd. Certain number of images of fundamental segments
In−1
0 and In0 , under iterates of T0, cover whole circle without overlapping beyond the endpoints
and form the nth dynamical partition of the circle

Pn := Pn(x0, T0) =
{
Inj := T j0 (I

n
0 ), 0 ≤ j < qn−1

}
∪
{
In−1
i := T i0(I

n−1
0 ), 0 ≤ i < qn

}
.
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Obviously, the partition Pn+1 is a refinement of the partition Pn. Indeed, the ”short” intervals
Inj are members of Pn+1 and each ”long” interval In−1

i ∈ Pn, 0 ≤ i < qn, is partitioned into
k + 1 intervals belonging to Pn+1 such that

In−1
i = In+1

i ∪
k−1∪
s=0

Ini+qn−1+sqn . (1.2)

Next, using the sequence of dynamical partition (Pn)n we introduce a certain symbolic
representation for the dynamics of T0 as follows. Let A = {a, 0, 1, ..., k} be an alphabet. Consider
the set of infinite words L = {a⃗ := (a1, a2, ..., an, ...) : | ai ∈ A} corresponding to S1 \ OT0(x0),
whereOT0(x0) = {x0, T0(x0), ...}, and defined as follows. Take an arbitrary point x ∈ S1\OT0(x0)
we associate the unique word a⃗ := (a1, a2, ..., an, ...) defined inductively as: an = a if x ∈ Inj ,
0 ≤ j < qn−1; an = k − s if x ∈ Ini+qn−1+sqn

, 0 ≤ i < qn, 0 ≤ s ≤ k − 1; and an = 0 if x ∈ In+1
i ,

0 ≤ i < qn. Thus, we obtain a one-to-one correspondence

S1 \ OT0(x0)
ψ←→ L.

Notice that, the finite word (a1, a2, ..., an) of the length n corresponds to an interval In

of the dynamical partition Pn. We set In = I(a1, a2, ..., an). Denote by λ0 a probability
measure on the space of sequences L induced by Lebesgue measure on the circle, namely,
λ0(a1, a2, ..., an) = |I(a1, a2, ..., an)|. Consider another space of one-sided sequences,

Ω+ = {−→ε = (ε1, ε2, ..., εn, ...) | εi ∈ A and εi+1 = 0 iff εi = a, i ≥ 1}.

Now, consider another T̃ ∈ E(T0). Since T̃ and T0 are topological conjugated the sets OT0(x0)
and O

T̃0
(y0) have the same order, where y0 = H(x0) and H is the conjugation between T̃ and T0.

Therefore, the symbolic representations of the points x ∈ S1 \ OT0(x0) and H(x) ∈ S1 \ O
T̃0
(y0)

are the same in L i.e., there exists a unique a⃗ ∈ L such that a⃗ = ψ(x) and a⃗ = ψ(H(x)). We set

γ⃗(ε) :=

{
(0, a, 0, a, ...), if ε = a
(a, 0, a, 0, ...), if ε = 0

∆n
i := H(Ini ) and V1 := ∆1

1 ∪∆2
1. Our main result is the following result.

Theorem 1.2. For any T ∈ E(T0) there exists a continuous (in the Tychonoff topology) mapping
U : Ω+ → R1 such that the following properties hold.

(1) For any −→ε = (ε1, ..., εp, εp+1, ..., εn, ...) and
−→
b = (ε1, ..., εp, bp+1, ..., bn, ...) belonging to the

space Ω+, there exists a constant C1 = C1(T ) > 0 such that

|U(−→ε )− U(
−→
b )| ≤ C1|αk|−p (1.3)

where αk = (ξk−1(η(0))− ξk(η(0)))−1.

(2) Let I(a1, ..., ar, ar+1, ..., an) ⊂ I(a1, ..., ar) ⊂ V1, 1 ≤ r < n. Then

|I(a1, ..., an)|
|I(a1, ..., ar)|

=
(
1 + ψ1(a1, ..., an)

)
· exp

{ n∑
s=r+1

U(as, as−1, ..., ar, ..., a1,
−→γ (a1))

}
, (1.4)

where |ψ1(a1, ..., an)| ≤ const · |αk|−r.
Remark 1.3. • Theorem 1.2 generalizes the main theorem of [2].
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• The second assertion of Theorem 1.2 implies that, the length of any interval In ∈ Pn can
be expressed in the ”Gibbs” form:

const ≤ |In|

exp
{ n∑
s=1

U(as, as−1, ..., ar, ..., a1,
−→γ (a1))

} ≤ Const.

• Following the terminology of statistical mechanics, we call U the potential corresponding
to the map T . Due to Theorem 1.2 the potential depends on the long-range variables
exponentially weakly, i.e., on the statistical mechanical point of view, it is ”good”.

• One can easily verify that the potential U is unique and invariant under a smooth change
of variable.

2. Metrical properties of the orbit of critical point
As we have mentioned above the homeomorphism T0 is analytic, has the cubic critical point
x0 = 0 and its rotation number is irrational. Due to Yoccoz’s [3] theorem T0 and the linear
rotation Tρk(x) = x+ ρk(mod 1) are topological equivalent. Hence the topological properties of
T0 and Tρk are the same. In this section we study the metric properties of the T0-orbit of the
critical point x0 = 0.We note that the commuting pair (ξ0, η0) is a fixed point of renormalization
operator R i.e., {

ξ0 = αk ◦ ξk−1
0 ◦ η0 ◦ α−1

k

η0 = αk ◦ ξk−1
0 ◦ η0 ◦ ξ0 ◦ α−1

k

(2.1)

where αk(z) = αkz and αk = [ξk−1
0 (η0(0)) − ξk0 (η0(0))]−1. We use this fact in the proof of the

following theorem.

Theorem 2.1. The following relations hold

T qn0 (α−n
k x) = α−n

k ξ0(x), x ∈ [η0(0), 0), (2.2)

T
qn+qn−1

0 (α−n
k x) = α−n

k η0(x), x ∈ [0, ξ0(0)) (2.3)

for all n ≥ 1.

Proof. We prove the theorem by induction. Let x ∈ [η0(0), 0). If n = 1, then q1 = k and
α−1
k (x) ∈ [0, ξ(0)). Therefore T q10 (α−1

k x) = T k0 (α
−1
k x) = T k−1

0 (T0(α
−1
k x)) = T k−1

0 (η0(α
−1
k x)).

Since η0(α
−1
k x) ∈ [η0(0), η0(ξ(0))) we get

T k−1
0 (η0(α

−1
k x)) = ξk−1

0 (η0(α
−1
k x)). (2.4)

Relation (2.1) implies ξk−1
0 (η0(α

−1
k x)) = α−1

k ξ0(x). Hence

T q10 (α−1
k x) = α−1

k ξ0(x). (2.5)

Suppose, the equation (2.2) holds k ≤ n. The relations (2.1) and qn+1 = kqn + qn−1 imply

T
qn+1

0 (α
−(n+1)
k x) = T

kqn+qn−1

0 (α
−(n+1)
k x) = T kqn0 (T

qn−1

0 (α
−(n−1)
k · α−2

k x))

= T kqn0 (α
−(n−1)
k ξ0(α

−2
k x)) = T

(k−1)qn
0 (T qn0 (α−n

k αkξ0(α
−2
k x)))

= T
(k−1)qn
0 (α−n

k ξ0(αkξ0(α
−2
k x))) = T

(k−1)qn
0 (α−n

k η0(α
−1
k x)) (2.6)

= T
(k−2)qn
0 (T qn0 (α−n

k η0(α
−1
k x))) = T

(k−2)qn
0 (α−n

k ξ0(ηk(α
−1
k x)))

...

= T qn0 (α−n
k ξk−2

0 ◦ η0(α−1
k x)) = α−n

k α−1
k ξ0(x) = α

−(n+1)
k ξ0(x).

This proves the first assertion of theorem. The proof of the second assertion is similar.
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As a consequence of Theorem 2.1 we have.

Corollary 2.2. Let x0 = 0 and xi = T i0x0, i ≥ 1. We have

xqn+1 = α−n
k x1

for all n ≥ 1.

Let An be a subset of OT0(x0) which is generation the nth-dynamical partition i.e., An =
{x0, x1, ..., xqn+qn−1}. We set

A(1)
n = An ∩ [0, ξ0(0)), A(ℓ+1)

n = An ∩ [xℓ, xℓ+1],

A(1,1)
n = An ∩ [0, xq1+q0), A(1,2)

n = An ∩ [xq1+q0 , ξ0(0)),

where 1 ≤ ℓ ≤ k. It is clear, that An =
k+1∪
ℓ=1

A
(ℓ)
n and A

(1)
n = A

(1,1)
n ∪ A(1,2)

n . Using the definition

of A
(i)
n , i = 1, k + 1 and the structure of dynamical partition one can show that

|A(i)
n | = qn−1 + qn−2, ı = 1, k, |A(k+1)

n | = qn−2 + qn−3, (2.7)

where | · | - the cardinality of the finite set. The next theorem describes the transition from An
to An+1.

Theorem 2.3. For all n ≥ 1 the following relations hold.

A
(k+1)
n+1 = α−1

k

(
A(1)
n ∪ ξ0(0)

)
, A

(ℓ+1)
n+1 = ξℓ−1

0

(
η(A

(1)
n+1)

)
, 1 ≤ ℓ ≤ k − 1,

A(1,1)
n = α−1

k

( k∪
i=1

A(i+1)
n

)
, A(1,2)

n = ξ0

(
A

(k+1)
n+1

)
= ξ0

(
α−1
k A(1)

n

)
.

Proof. This theorem is also proved by induction. Assertion of the theorem can be easily verified
for n = 1. We rewrite An and An+1 as

An = An−1 ∪ (An \An−1), An+1 = An ∪ (An+1 \An).

By the induction hypothesis, the assertion of Theorem 2.3 is true for An−1 and An. On the other
hand, An−1 is a subset of An and this a subset of An+1. Consequently, it is enough to prove the
assertions of Theorem 2.3 for An \An−1 and An+1 \An. Using the definition of An we get

An+1 \An =
{
xqn+qn−1 , xqn+qn−1+1, ..., xqn+1+qn−1

}
,

An \An−1 =
{
xqn−1+qn−2 , xqn−1+qn−2+1, ..., xqn−1+qn−1

}
,

|(A(j)
n+1 \A

(j)
n )| = kqn−1, 1 ≤ j ≤ k, |(A(k+1)

n+1 \A
(k+1)
n )| = kqn−2.

Consider the first element xqn+qn−1 of An+1 \An. By Theorem 2.1

xqn+qn−1 = α−1
k xqn−1+qn−2 . (2.8)

So, the first element of An+1 \ An obtains from the first element of An \ An−1 by multiplying
α−1
k . We pass to the second element of An+1 \ An. Here, depending on the sign of xqn−1+qn−2

there are two possibilities: either xqn−1+qn−2 ∈ [η0(0), 0) or xqn−1+qn−2 ∈ [0, ξ0(0))
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(a) if xqn−1+qn−2 ∈ [η0(0), 0) then by Theorem 2.1 we have

xqn+qn+1+1 = T0(xqn+qn+1) = T0(α
−1
k xqn−1+qn−2) = ξ0(α

−1
k xqn−1+qn−2) ∈ [xq1+q0 , ξ0(0)),

xqn+qn+1+2 = T0(ξ0(α
−1
k xqn−1+qn−2)) = η0(ξ0(α

−1
k xqn−1+qn−2)) ∈ [x1, x2),

xqn+qn+1+3 = T0(η0(ξ0(α
−1
k xqn−1+qn−2))) = ξ0(η0(ξ0(α

−1
k xqn−1+qn−2))) ∈ [x2, x3),

. . . . . . . . .

xqn+qn+1+k+1 = T0(ξ
k−2
0 (η0(ξ0(α

−1
k xqn−1+qn−2)))) = ξk−1

0 (η0(ξ0(α
−1
k xqn−1+qn−2))) =

= α−1
k η0(xqn−1+qn−2) = α−1

k xqn−1+qn−2+1 ∈ [0, ξ0(0)).

(b) if xqn−1+qn−2 ∈ [η(0), 0) then again Theorem 2.1 we have

xqn+qn−1+1 = T0(xqn+qn+1) = T0(α
−1
k xqn−1+qn−2) = η0(α

−1
k xqn−1+qn−2) ∈ [x1, x2),

xqn+qn−1+2 = T0(η0(α
−1
k xqn+qn+1)) = ξ0(η0(α

−1
k xqn−1+qn−2) ∈ [x2, x3)),

. . . . . . . . .

xqn+qn−1+k+1 = ξk−1
0 (η0(α

−1
k xqn−1+qn−2) = α−1

k ξ0(xqn−1+qn−2)) = α−1
k xqn−1+qn−2+1.

Continue this process one can show that any element of An \ An−1 obtains by multiplying α−1
k

to an element of An+1 \ An. Moreover, with the same manner as in (a) and (b) one can show
that for each element of xqn+qn−1+j , 0 ≤ j ≤ kqn− 1, there exists an element xqn−1 + qn−2+ i in

Bp :=
{
xqn−1+qn−2 , xqn−1+qn−2+1, ..., xqn−1+qn−2+p

}
where p > 1, such that: either xqn+qn−1+j = α−1

k xqn−1+qn−2+i, or xqn+qn−1+j =

ξj−t0 (η0(α
−1
k xqn−1+qn−2+2)), t ≤ j ≤ t+k−2, or xqn+qn−1+j = ξj−t0 (η0(ξ0(α

−1
k xqn−1+qn−2+i))), t ≤

j ≤ t+ k − 2. Next we show that B = An \An−1. To do this it is enough to show p = kqn−1. A
simply calculation shows that

|B ∩ (0, ξ(0))| = |(An+1 \An) ∩ [xq1 , 0)| = qn−1 + qn−2;

|B ∩ (xq1 , 0]| = |(An+1 \An) ∩ [xq1+q0 , ξ(0)]| = kqn−1;

|B ∩ (xq1+q0 , ξ(0))| = |(An+1 \An) ∩ [η(0), x2]| = kqn−1;
. . . . . . . . .

|B ∩ (xk−2, xk−1)| = |(An+1 \An) ∩ (xk−1, xk]| = kqn−1.

Similarly

|B ∩ [η(0), 0)| = |(An+1 \An) ∩ [0, xq1+q0 ]| = kqn−1 − kqn−2;

|B ∩ (η(0), x2]| = |(An+1 \An) ∩ (x2, x3]| = kqn−1.

Using these equations one can show that |B ∩ [η(0), ξ(0)]| = kqn−1 − kqn−2 + kqn−2 = kqn−1.
This implies |B| = |(An+1 \An)| = kqn−1. Theorem 2.3 is proved.

Next we estimate the ratio of lengths of two intervals of dynamical partitions.

Lemma 2.4. Let In ∈ Pn and In−m ∈ Pn−m, n > m such that In ⊂ In−m. There exists a
constant C = C(T0) > 0 such that

In

In−m
≤ C|αk|−m, |αk|−3n ≤ C|In0 |.
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Proof. The proof of lemma follows closely that of [1] for the Feigenbaum map.

To formulate our next result we define some subsets of Pn as follow

P(1)
n =

{
In ∈ Pn : such that In ⊂ [η0(0), 0]

}
,

P(2)
n =

{
In ∈ Pn : such that In ⊂ [0, ξ0(0)]

}
,

Pn,i =
{
In ∈ Pn : such that In ⊂ Ii0

}
,

where i = (n − m − 1), (n − m). The following theorem plays an important role to build the
thermodynamical formalism for T0.

Theorem 2.5. The following relations hold, for any 0 < m < n.

Pn,n−m = α
−(n−m)
k P(1)

m , Pn,n−m−1 = α
−(n−m)
k P(2)

m

if (n−m) is an odd number.

Pn,n−m−1 = α
−(n−m)
k P(2)

m , Pn,n−m = α
−(n−m)
k P(1)

m

if (n−m) is an even number.

Proof. The proof of theorem follows from Theorem 2.3.

Consider the interval V n−m
1 = In−m1 ∪ In−m+1

1 . Notice that this interval is a neighborhood
of the point x1. Further, taking two intervals I ′ and I such that I ′ ⊂ I ⊂ V n−m

1 and
I ′ ∈ Pn+1, I ∈ Pn we provide an estimate for the ration R0 = |I ′|/|I| and its ”iterations”
Ri = |T i0(I ′)|/|T i0(I)|. Denote

sn−m =

{
qn−m+1, if I ⊂ In−m1 ,
qn−m, if I ⊂ In−m+1

1 .

The following lemma will be used below.

Lemma 2.6 ([8]). There exists a constant C = C(T0) > 0 and a natural number N0 = N0(T0)
such that ∣∣∣∣ln RiR0

∣∣∣∣ ≤ C|αk|−m, 0 < i < sn−m (2.9)

for all n > N0.

3. Proof of Theorem 1.2
In this section we prove Theorem 1.2 i.e., we build the potential U for T0. Note that the proof
of Theorem 1.2 follows closely that of Theorem 1.1 in [2]. To prove the theorem first we define

the prelimit potentials U
(n)
m (ε1, ε2, ..., εm) and Ũ

(n)
m (ε1, ε2, ..., εm) for 1 ≤ m ≥ n and then we

show that these potentials converge to the same limit Um(ε1, ε2, ..., εm) exponentially fast as
n → ∞. Finally we show that the limit of Um(ε1, ε2, ..., εm) exists and unique as m → ∞.
Take m ≥ 1 and fix it. Consider the V

(n−m)
1 neighborhood of x1 for n ≥ m. It is clear that

V
(n−m)
1 ⊂ [η0(0), x3] ∪ [x2, ξ0(0)) for n ≥ m + 4. For definiteness we assume (n −m)- is even.

The proof is similar for the case when (n−m)-is odd. It is obvious

In−m1 ⊂ [x1, x3] and In−m+1
1 ⊂ [x2, ξ(0)).
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Consider two intervals I ′ ∈ Pn and I ∈ Pn−1 such that I ′ ⊂ I ⊂ In−k1 . Let the words

I
( (n−m+ 1) times︷ ︸︸ ︷
a, 1, 0, a, ..., 0, a, εm, ..., ε2, ε1︸ ︷︷ ︸

(n− 1) times

)
and I

( (n−m+ 1) times︷ ︸︸ ︷
a, 1, 0, a, ..., 0, a, εm, ..., ε2︸ ︷︷ ︸

(n− 1) times

)

be the symbolic representations of I ′ and I respectively. Define the following functions

U (n)
m (ε1, ε2, ..., εm) = ln

I(a, 1, 0, a, ..., 0, a, εm, ..., ε2, ε1)

I(a, 1, 0, a, ..., 0, a, εm, ..., ε2)
.

and

Ũ (n)
m (ε1, ε2, ..., εm) = ln

I(1, 0, a, 0, ..., a, εm, ..., ε2, ε1)

I(1, 0, a, 0, ..., a, εm, ..., ε2)
.

It follows from the structure of dynamical partition and the definition of symbolical
representation that

|I(1, 0, a, 0, ..., a, εm, ..., 0, a)| = |I(1, 0, a, 0, ..., a, εm, ..., 0)|.

It is easy to see that

U (n)
m (a, 0, ε3, ..., εm) = Ũ (n)

m (a, 0, ε3, ..., εm) = 0.

Using Theorem 2.5, we get:

I(a, 1, 0, a, ..., 0, a, εm, ..., ε2, ε1) = η0(I(0, a, 0, a, ..., 0, a, εm, ..., ε2, ε1)) =

= η0(α
−(n−m−1)
k (I(εm, ..., ε2, ε1))), (3.1)

where I(εm, ..., ε2, ε1) ∈ Pm. Similarly,

I(a, 1, 0, a, ..., 0, a, εm, ..., ε2) = η0(α
−(n−m−1)
k (I(εm, ..., ε2))) (3.2)

where I(εm, ..., ε2) ∈ Pm−1. Denote by (β1, β2) and (β3, β4) the intervals that correspond to
I(εm, ..., ε2, ε1) and I(εm, ..., ε2), respectively. It is obvious that (β1, β2) ⊂ (β3, β4). Using the

definition U
(n)
m and (3.1)-(3.2)we get

U (n)
m (ε1, ε2, ..., εm) = ln

|η0(α−(n−m−1)
k β2)− η0(α−(n−m−1)

k β1)|
|η0(α−(n−m−1)

k β4)− η0(α−(n−m−1)
k β3)|

=

= ln
β32 − β31
β34 − β33

+O(α−3(n−m)
k ) := Um(ε1, ε2, ..., εm) +O(|αk|−3(n−m)). (3.3)

With the same manner one can show

Ũ (n)
m (ε1, ε2, ..., εm) = Um(ε1, ε2, ..., εm) +O(|αk|−3(n−m)). (3.4)

Next we prove the existence of the limit of Um(ε1, ε2, ..., εm) when m → ∞. For this we
take a word −→ε = (ε1, ..., εn, ...) ∈ Ω+ and fix it. For a given m consider the expression
Um := Um(ε1, ..., εm). Using (3.3) and (3.4), one can get

Uℓ+m = ln
|I(−→γ 2n(εℓ+m), εℓ+m, ..., ε1))|
|I(−→γ 2n(εℓ+m), εℓ+m, ..., ε2))|

+O(|αk|−6n), (3.5)
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where −→γ 2n(εℓ+m) is a 2n- dimensional vector of the form

−→γ 2n(εℓ+m) =

{
(1, 0, a, 0, ..., a, 0), if εℓ+m = a,
(a, 1, 0, a, ..., 0, a), if εℓ+m = 0 ∨ 1

and the interval −→γ 2n(εℓ+m, εℓ+m−1, ..., ε1) t is an element of dynamical partition P2n+ℓ+m. It
follows from the definition of symbolical dynamics, that the interval −→γ 2n(εℓ+m, εℓ+m−1, ..., ε1)
belongs to the trajectory of the interval I(−→γ 2n+m(εℓ+m), εℓ+m, ..., ε1). More precisely

I(−→γ 2n(εℓ+m), εℓ+m, ..., εℓ+1, εℓ, ..., ε2, ε1) = T i0(I(
−→γ 2n+m(εℓ+m), εℓ, ..., ε2, ε1)) (3.6)

where 0 ≤ i < q2n+m if εℓ = a and 0 ≤ i < q2n+m+1 if εℓ = 0 ∨ 1. Using (2.9), we get∣∣∣∣∣ln
{
|T i0(I(

−→γ 2n+m(εℓ+m), εℓ, ..., ε2, ε1))|
|T i0(I(

−→γ 2n+m(εℓ+m), εℓ, ..., ε2))|
×

(
|I(−→γ 2n+m(εℓ+m), εℓ, ..., ε2, ε1)|
|I(−→γ 2n+m(εℓ+m), εℓ, ..., ε2)|

)−1
}∣∣∣∣∣ ≤ C|αk|−ℓ.

(3.7)
On the other hand, by (3.3) and (3.4) we have

ln
|I(−→γ 2n+m(εℓ+m), εℓ, ..., ε2, ε1)|
|I(−→γ 2n+m(εℓ+m), εℓ, ..., ε2)|

= Uℓ +O(|αk|−(2n+m). (3.8)

Combining (3.5), (3.7) and (3.8) we get

|Uℓ+m − Uℓ| ≤ C|αk|−ℓ, (3.9)

for sufficiently large ℓ and m. Hence (Un)n is a Cauchy sequence. Let U(ε1, ε2, ..., εn, ...) be the
limit function of the sequence (Un)n. Taking the limit in (3.9) as m→∞, we get

|U(ε1, ε2, ..., εn, ...)− U(ε1, ε2, ..., εℓ)| ≤ C|αk|−ℓ.

This proves the first assertion of Theorem 1.2. Next we prove the second assertion of
Theorem 1.2. Consider the intervals I(a1, ..., an) and I(a1, ..., ar) such that I(a1, ..., an) ⊂
I(a1, ..., ar) ⊂ [η0(0), x3] ∪ [x2, ξ0(0)], r < n. Denote by (βi, βi+1) and (di, di+1) the intervals
that correspond to I(a1, ..., ar+i) and I(a1, ..., ar+i−1) respectively, where i ∈ [1, n−r]. It is clear
that (βi, βi+1) ⊂ (di, di+1). Using the same arguments as in (3.3), one can show that

U
(n+r+i)
r+i (ar+i, ..., a1) =

β3i+1 − β3i
d3i+1 − d3i

+O(|αk|−6n) =

=
I(a1, ..., ar+i−1, ar+i)

I(a1, ..., ar+i−1)
·
β2i+1 + βi+1βi + β2i
d2i+1 + di+1di + d2i

+O(|αk|−6n). (3.10)

Since [di, di+1] ⊂ [ηk(0), x3] ∪ [x2, ξk(0)] and the rank of [di, di+1] is (r + i− 1) we get

β2i+1 + βi+1βi + β2i
d2i+1 + di+1di + d2i

= 1 +O(|αk|−(r+i)).

Substituting the right hand side of the above equation (3.10) we get

I(a1, ..., ar+i−1, ar+i)

I(a1, ..., ar+i−1)
= U

(n+r+i)
r+i (ar+i, ..., a1) +O(|αk|−(r+i))

for sufficiently range n. Taking the products from both sides of this relation over i = 1, (n− r),
we obtain the second assertion of Theorem 1.2. Theorem 1.2 is completely proved.
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