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Abstract. An algebraic analog of the Fundamental Basis Theorem of geometry is offered
with a pure algebraic proof involving the famous Waring’s problem for polynomials. Unlike the
geometry case the offered system of invariant differential operators is commuting, which is a
new result even in the classical geometry of surfaces. Moreover the algebraic analog works in
more general settings then does the Fundamental Basis Theorem of geometry.

1. Introduction
Let m ≤ n be any fixed natural numbers, H be any subgroup of the general linear group
GL(n,R), B ⊂ Rm be an open unit ball and

x(t) = (x1(t1, t2, ..., tm), x2(t1, t2, ..., tm), ..., xn(t1, t2, ..., tm))

be infinitely smooth m-parametric variable surface in Rn, where R is the field of real numbers.
The surface x(t) is assumed to be written in the row form.

Definition 1.1. An infinitely smooth function f∂(x(t)) of x(t) = (x1(t), x2(t), ..., xn(t)) and

its finite number of derivatives with respect to ∂
∂t1

, ∂
∂t2

, ..., ∂
∂tm

is said to be (Ĝ,H)-invariant of
the surface if the equality

f δ(x(s(t))h) = f∂(x(t))

holds true for any h ∈ H, t ∈ B and s ∈ Ĝ, where Ĝ = Dif(B) stands for the group
of diffeomorphisms of B, ∂ stands for ( ∂

∂t1
, ∂
∂t2

, ..., ∂
∂tm

), s(t) = (s1(t), s2(t), ..., sm(t)) and

δi = ∂
∂si(t)

, i = 1, 2, ...,m.

One of the important problems of differential geometry is the description of all such invariant

functions R(x)(Ĝ,H). It is called the set of differential invariant functions of m-dimensional
surfaces with respect to the motion group H. The Fundamental Basis Theorem of geometry, first
formulated by Lie, states that there exist (Ĝ,H)-invariant differential operators δ1, δ2, ..., δm and

a finite system of the (Ĝ,H)-invariant functions such that locally any (Ĝ,H)-invariant function
is a function of this finite system of elements and their finite number of derivatives with respect
to the δ1, δ2, ..., δm . Note that the Fundamental Basis Theorem does not state the existence of
such commuting system of invariant differential operators. But it states that the commutators
δiδj − δjδi, i, j = 1, 2, ...,m, can be represented as linear combinations of δ1, δ2, ..., δm. For the
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more detailed information about the Fundamental Basis Theorem of geometry one can see [1, 2].
We note also that the main method of geometry, in dealing with differential invariant functions
and invariant differentials, are the ”The Moving Frame Method” and its generalizations [3].

In the current paper an algebraic analog of the Fundamental Basis Theorem of geometry
is offered with a pure algebraic proof involving the famous Waring’s problem for polynomials.
Moreover it is shown that the system of invariant differential operators δ1, δ2, ..., δm can be
chosen commuting which is a new result even in classical differential geometry of surfaces. In
addition our approach works in more general settings than does ”The Moving Frame Method”.

To formulate an algebraic analog of the Fundamental Basis Theorem note that the above
change of parameters t = (t1, ..., tm) can be presented in the following form

∂

∂ti
=

m∑
j=1

∂sj(t)

∂ti

∂

∂si
,

i.e. δ = g−1∂, where g is matrix with the elements gij =
∂sj(t)
∂ti

, i, j = 1, ...,m, and ∂ (δ) is the

column vector with the “coordinates” ∂
∂t1

, ∂
∂t2

, ..., ∂
∂tm

(respectively, ∂
∂s1

, ∂
∂s2

, ..., ∂
∂sm

).
Moreover every infinitely smooth parameterized surface x : B → Rn can be regarded as an

element of differential module (Fn; ∂1, ∂2, ..., ∂m), with the coordinate-wise action of ∂i = ∂
∂ti

on

elements of Fn, where F = C∞(B) is the differential ring of infinitely smooth functions relative
to differential operators ∂

∂t1
, ∂
∂t1

, ..., ∂
∂tm

. If elements of this module are written in the row form
the above considered transformations look like

x = (x1, x2, ..., xn) 7→ xh, ∂ 7→ g−1∂,

where g is a matrix with elements gij =
∂sj(t)
∂ti

, i, j = 1, 2, ...,m, h ∈ H, s ∈ Ĝ.
Therefore the following algebraic analogue of the above problem is natural.
Let (F ; ∂) be any characteristic zero differential field, where ∂ is a column-vector of

commuting system of differential operators ∂1, ∂2, ..., ∂m of F ,

C = {a ∈ F : ∂ia = 0 for i = 1, 2, ...,m}

be its constant field, H be a subgroup of GL(n,C) and

GL∂(m,F ) = {g ∈ GL(m,F ) : ∂igjk = ∂jgik for i, j, k = 1, 2, ...,m}.

One can verify easily that whenever g ∈ GL∂(m,F ) the system δ1, δ2, ..., δm is also a
commuting system of differential operators of F , where δ = g−1∂. This is an analogue of
gauge transformations (change of variables) for the abstract differential field (F ; ∂).

In general the set GL∂(m,F ) is not a group with respect to the ordinary product of matrices
as far as it is not closed with respect to that product. But by the use of it a natural groupoid
[4] can be constructed with the base {g−1∂ : g ∈ GL∂(m,F )}.

Further let x1, ..., xn be differential algebraic independent variables over F , x stand for the
row vector with coordinates x1, x2, ..., xn, C⟨x, ∂⟩ be the field of ∂-differential rational functions
in x over C and G = GL∂(m,F ).

Definition 1.2. An element f∂⟨x⟩ ∈ C⟨x; ∂⟩ is called to be (G,H)- invariant if the equality

fg−1∂⟨xh⟩ = f∂⟨x⟩

holds true for any g ∈ G,h ∈ H.
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We denote by C⟨x; ∂⟩(G,H) the field of all such (G,H)- invariant ∂-differential rational

functions. From the algebraic point of view this field is a natural analog of R(x)(Ĝ,H) and
as such it is worthy to be described.

The organization of the paper is as follows. In the next section, with its own notations, a
generalization of classical Faa

′
di Bruno formula is presented via the symmetric tensor product

of matrices. This generalization is used to prove an algebraic analog of the Fundamental Basis
Theorem of geometry in the next section.

In the hypersurface case a similar result have been obtained in [7] by another algebraic
method, the finite group H case is considered in [8]. The used notions of differential algebra can
be found in [5].

2. A generalization of Faa
′
di Bruno formula

The following classical Faa
′
di Bruno formula on higher order derivatives of the composite

functions is well known: For smooth functions of one variable f = f(x), g = g(t) and natural
number m the following equality

dm

dtm
f(g(t)) =

m∑
k=1

f (k)(g(t))
∑

|α|=k,∥α∥=m

m!

α!
(
g′(t)

1!
)α1(

g′′(t)

2!
)α2 ...(

g(m)(t)

m!
)αm

holds true, where α = (α1, α2, ..., αm), α! = α1!α2!...αm!, |α| = α1 + α2 + ... + αm, ∥α∥ =
α1 +2α2 + ...+mαm. It can be proved by induction on m taking into account the additive, the
Leibniz and chain rule properties of the derivative. Of course the fact that elements g′(t), g”(t), ...
commute with each other is used silently.

Note that if one uses notations d := d
dt , g := g′(t), δ := d

dg(t) = d
dx then d = gδ (the chain

rule) and the above mentioned formula can be written in the form

dm

m!
=

m∑
k=1

(
∑

|α|=k,∥α∥=m

k!

α!
(
g

1!
)α1(

dg

2!
)α2 ...(

dm−1g

m!
)αm)

δk

k!
.

In this section we are going to show that ”the same formula” is true in partial derivatives
(multivariate) case but to do it we need the symmetric tensor product. The main properties
of it with proofs can be found in [9, 10]. Here some needed definitions and properties are
presented without proofs, except for some results which are very closely related to the proof of
the generalized Faa

′
di Bruno formula.

Let n be any positive integer and In stand for all row n-tuples with nonnegative integer
entries with the following linear order: β = (β1, β2, ..., βn) < α = (α1, α2, ..., αn) if and only if
|β| < |α| or |β| = |α| and β1 > α1 or |β| = |α|, β1 = α1 and β2 > α2 etcetera. We write β ≪ α

if βi ≤ αi for all i = 1, 2, ..., n,

(
α
β

)
stands for α!

β!(α−β)! .

We allow n to be zero also and in this case it is accepted that In = {0}.
Consider any associative algebra A, with 1, over a field of zero characteristic and let C stand

for the center of A. For any nonnegative integer numbers p′, p let Mn′,n(p
′, p;A) = M(p′, p;A)

stand for all ”p′×p” size matrices A = (Aα′
α )|α′|=p′,|α|=p (α′ presents row, α presents column and

α′ ∈ In′ , α ∈ In) with entries from A.

The ordinary size of such matrix is

(
p′ + n′ − 1
n′ − 1

)
×

(
p+ n− 1
n− 1

)
. Over this kind of

matrices in addition to the ordinary sum and product of matrices we consider the following
symmetric product ⊙ as well [9, 10]:
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Definition 2.1. If A ∈ M(p′, p;A) and B ∈ M(q′, q;A) then

A⊙B = C ∈ M(p′ + q′, p+ q;A)

such that for any |α′| = p′ + q′, |α| = p+ q, where α′ ∈ In′, α ∈ In,

Cα′
α = (A⊙B)α

′
α =

∑
β,β′

(
α
β

)
Aβ′

β Bα′−β′

α−β ,

where the sum is taken over all β′ ∈ In′ , β ∈ In, for which |β′| = p′, β′ ≪ α′, |β| = p, β ≪ α .

We use the symmetric tensor product as well when all components of A are linear maps from
A to A and all components of B are also linear maps from A to A or all components of it are

in A. In the first case Aβ′

β Bα′−β′

α−β stands for composition Aβ′

β ◦Bα′−β′

α−β and in the second case it

stands for Aβ′

β (Bα′−β′

α−β ).

In future A⊙m means the m-th power of matrix A with respect to the product ⊙.

Proposition 2.2. a) A⊙B = B ⊙A whenever all entries of A or B are in C.
b) (λ1A+λ2B)⊙C = λ1(A⊙C)+λ2(B⊙C) and A⊙ (λ1B+λ1C) = λ1(A⊙B)+λ2(A⊙C)

whenever λ1, λ2 ∈ C.
c) (A⊙B)⊙ C = A⊙ (B ⊙ C).
d) A(B ⊙H) = (AB)⊙H, for any row H ∈ M(0, p;A).
e) For any natural m, v ∈ M(1, 0;C) and h ∈ M(0, 1;C) one has

(v⊙m)α
′

0 =

(
m
α′

)
vα

′
, (h⊙m)0α = m!hα

, where hα stands for hα1
1 hα2

2 ...hαn
n .

Let ∂ = (∂1, ∂2, ..., ∂n′
), δ = (δ1, δ2, ..., δn) be column vectors of commuting systems of

differential operators of the algebra A for which ∂ = gδ, where gij ∈ C, ∂kgij = ∂igkj for all

i, k = 1, 2, ..., n′, j = 1, 2, ..., n.
In ordinary (one variable) derivative d case the change of the variable means a change of

d according to d 7→ a−1d, where a ∈ F . In this case to prove the Faa
′
di Bruno formula one

needs only additive property of d, the Leibniz law and that elements {dka}k=1,2,... commute
with each other. Therefore to prove similar formula in partial (multivariate) derivatives case
one should have ”an appropriate product” for which the above listed properties of d hold true
for the partial derivatives. The following result says that for ”an appropriate product” one can
take the symmetric tensor product.

Lemma 2.3. The following are true.
a) ∂ ⊙ (A⊙B) = (∂ ⊙A)⊙B +A⊙ (∂ ⊙B) (the Leibniz law).
b) ∂ ⊙ (A(p′, q)B(q, p)) = (∂ ⊙A)B + 1

q+1(A⊙ g)(δ ⊙B) whenever

δk(Bα−ek
β ) =

αk

q + 1
(δ ⊙B)αβ =

αk

|α|
(δ ⊙B)αβ

for all k = 1, 2, ..., n, α ∈ In, |α| = q + 1 and |β| = p. Here AB stands for the ordinary product
of matrices A and B, all components of ei ∈ In are zero except for i-th which is 1.

c) If δk(Bα−ek
γ ) = αk

|α|(δ ⊙B)αγ for all k = 1, 2, ..., n, α ∈ In, |α| = q + 1 and |γ| = p then the

matrix δ ⊙B also has similar property:

δk(δ ⊙B)β−ek
γ =

βk
|β|

(δ ⊙ (δ ⊙B))βγ

for all k = 1, 2, ..., n, β ∈ In, |β| = q + 2 and |γ| = p.

d) ∂ ⊙ (A δ⊙m

m! ) = (∂ ⊙A) δ
⊙m

m! + (A⊙ g) δ
⊙m+1

(m+1)! (the generalized chain rule).
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Proof. We use component-wise checking.

a. (∂ ⊙ (A⊙B))α
′

α =
∑n′

i=1 ∂
i(A⊙B))α

′−ei
α =

∑n
i=1 ∂

i
∑

β′,β

(
α
β

)
Aβ′

β Bα′−ei−β′

α−β =

n′∑
i=1

∑
β′,β

(
α
β

)
(∂iAβ′

β )Bα′−ei−β′

α−β +
n′∑
i=1

∑
β′,β

(
α
β

)
Aβ′

β ∂iBα′−ei−β′

α−β =

∑
β′,β

(
α
β

) n′∑
i=1

(∂iAβ′−ei
β )Bα′−β′

α−β +
∑
β′,β

(
α
β

)
Aβ′

β

n′∑
i=1

∂iBα′−ei−β′

α−β =

∑
β′,β

(
α
β

)
(∂ ⊙A)β

′

β Bα′−β′

α−β +
∑
β′,β

(
α
β

)
Aβ′

β (∂ ⊙B)α
′−β′

α−β =

((∂ ⊙A)⊙B)α
′

α + (A⊙ (∂ ⊙B))α
′

α = ((∂ ⊙A)⊙B +A⊙ (∂ ⊙B))α
′

α

b. (∂ ⊙ (AB))α
′

α =
∑n′

i=1 ∂
i(AB)α

′−ei
α =

∑n′

i=1 ∂
i(
∑

γ A
α′−ei
γ Bγ

α) =

∑
γ

n′∑
i=1

((∂iAα′−ei
γ )Bγ

α +Aα′−ei
γ (∂iBγ

α)) =
∑
γ

(∂ ⊙A)α
′

γ Bγ
α +

∑
γ

n′∑
i=1

Aα′−ei
γ (

n∑
j=1

gijδ
jBγ

α)

Note that
∑

γ(∂ ⊙A)α
′

γ Bγ
α = ((∂ ⊙A)B)α

′
α and

∑
γ

n′∑
i=1

Aα′−ei
γ (

n∑
j=1

gijδ
jBγ

α) =
∑
γ

n′∑
i=1

n∑
j=1

Aα′−ei
γ gij

γj + 1

|γ|+ 1
(δ ⊙B)

γ+ej
α =

∑
γ

n′∑
i=1

n∑
j=1

Aα′−ei
γ gij

γj + 1

q + 1
(δ ⊙B)

γ+ej
α =

∑
γ

n′∑
i=1

n∑
j=1

Aα′−ei
γ−ej

gij
γj

q + 1
(δ ⊙B)γα =

∑
γ

n′∑
i=1

n∑
j=1

(
γ
ej

)
Aα′−ei

γ−ej
gij

1

q + 1
(δ ⊙B)γα

=
∑
γ

(A⊙ g)α
′

γ

1

q + 1
(δ ⊙B)γα) =

1

q + 1
((A⊙ g)(δ ⊙B))α

′
α .

c. Proof of it is similar to the b) case.
d. It is a consequence of the second relation as far as δ⊙m has property

δk((δ⊙m)α−ek) =
αk

m+ 1
(δ⊙(m+1))α

for any k = 1, 2, ..., n, α ∈ In and |α| = m+ 1.

So we have the following properties of ∂: Additive property, Leibniz law ( Lemma 2.3 a)),
the generalized chain rule ( Lemma 2.3 d)) and

(∂⊙kg)k=0,1,2,...

commute with each other with respect to ⊙. In the last case we are using the fact that the
center C is invariant with respect to derivatives. Therefore without repeating routine induction
on m, as in one variable case, one more time we can formulate the following generalization of
well known classical Faa

′
di Bruno formula [11].
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Theorem 2.4. Let A be any associative algebra, with 1, over a field of zero characteristic
and let C stand for the center of A. If ∂ = (∂1, ∂2, ..., ∂n′

), δ = (δ1, δ2, ..., δn) are column
vectors of commuting system of differential operators of the algebra A for which ∂ = gδ, where
g = (gij)i=1,2,..,n′;j=1,2,...,n, g

i
j ∈ C, ∂kgij = ∂igkj for all i, k = 1, 2, ..., n′, j = 1, 2, ..., n then for

any natural m the following equality is true

∂⊙m

m!
=

m∑
k=1

∑
|α|=k,∥α∥=m

(∂
⊙0

1! ⊙ g)⊙α0

α0!
⊙

(∂
⊙1

2! ⊙ g)⊙α1

α1!
⊙ ...⊙

(∂
⊙m−1

m! ⊙ g)⊙αm−1

αm−1!

δ⊙k

k!

where ∂⊙0

0! ⊙ g = 1⊙ g = g, α = (α0, α1, ..., αm−1), ∥α∥ = 1α0 + 2α1 + ...+mαm−1.

One can check directly that in n = n′ = 1 case whenever |α| = k, ∥α∥ = m then

k!

α!
(
g

1!
)α0(

dg

2!
)α1 ...(

dm−1g

m!
)αm−1 =

(∂
⊙0

1! ⊙ g)⊙α0

α0!
⊙

(∂
⊙1

2! ⊙ g)⊙α1

α1!
⊙ ...⊙

(∂
⊙m−1

m! ⊙ g)⊙αm−1

αm−1!

at any 1 ≤ k ≤ m, where d = ∂ = gδ. For it one should take into account that ∂⊙i−1

i! ⊙ g should
be treated as ”i× 1” size matrix, though it’s ordinary size is 1× 1, and notice

(
∂⊙i−1

i!
⊙ g)⊙αi−1 = (

di−1g

i!
)αi−1αi−1!,

(
∂⊙i−1

i!
⊙ g)⊙αi−1 ⊙ (

∂⊙j−1

j!
⊙ g)⊙αj−1 = (

di−1g

i!
)αi−1(

dj−1g

j!
)αj−1(αi−1 + αj−1)!

3. The Fundamental Basis Theorem of Geometry
As we have agreed in the introduction (F ; ∂) stands for the characteristic zero differential field
with the given commuting system of differential operators ∂1, ∂2, ..., ∂m of F , C is its constant
field, H be a subgroup of GL(n,C) and

GL∂(m,F ) = {g ∈ GL(m,F ) : ∂igjk = ∂jgik for i, j, k = 1, 2, ...,m}.

Further it is assumed that the system of differential operators ∂1, ∂2, ..., ∂m is linear independent
over F .

Definition 3.1. An element f∂⟨x⟩ ∈ C⟨x; ∂⟩ (A differential operator d(∂,x) : C⟨x; ∂⟩ →
C⟨x; ∂⟩)) is said to be (G,H)- invariant if the equality

fg−1∂⟨xh⟩ = f∂⟨x⟩ (respectively, d(g−1∂,xh) = d(∂,x))

holds true for any g ∈ G, h ∈ H.

Definition 3.2. An element f∂⟨x⟩ ∈ C⟨x; ∂⟩ is said to be (G,H)- relative invariant if there
exist integer numbers k, l such that the equality

fg−1∂⟨xh⟩ = det(g)k det(h)lf∂⟨x⟩

holds true for any g ∈ G,h ∈ H.

Proposition 3.3. If f∂
1 ⟨x⟩, f∂

2 ⟨x⟩ are two nonzero relative invariants with corresponding (k1, l1),
(k2, l2) and k1 ̸= 0, k2 ̸= 0 then for the column vector

M∂
1 ⟨x⟩ =

∂ ⊙ f∂
2 ⟨x⟩

k2f∂
2 ⟨x⟩

− ∂ ⊙ f∂
1 ⟨x⟩

k1f∂
1 ⟨x⟩

one has M∂
1 ⟨x⟩ = gM δ

1 ⟨xh⟩ for any g ∈ G,h ∈ H.
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Proof. Application of ∂ to the both sides of the equality

fg−1∂
i ⟨xh⟩ = det(g)kidet(h)lif∂

i ⟨x⟩

results in

gδ ⊙ f δ
i ⟨y⟩ = det(h)likidet(g)

ki−1(∂ ⊙ det(g))f∂
i ⟨x⟩+ det(h)lidet(g)ki(∂ ⊙ f∂

i ⟨x⟩),

where δ = g−1∂, y = xh. Hence, assuming ki ̸= 0, one has

g
δ ⊙ f δ

i ⟨y⟩
kif δ

i ⟨y⟩
=

∂ ⊙ det(g)

det(g)
+

∂ ⊙ f∂
i ⟨x⟩

kif∂
i ⟨x⟩

.

Therefore for the column vector M∂
1 ⟨x⟩ =

∂⊙f∂
2 ⟨x⟩

k2f∂
2 ⟨x⟩

− ∂⊙f∂
1 ⟨x⟩

k1f∂
1 ⟨x⟩

one has

Mg−1∂
1 ⟨xh⟩ = g−1M∂

1 ⟨x⟩

for any g ∈ G,h ∈ H.

Theorem 3.4. (The Fundamental Basis Theorem of Geometry) There exists a commuting
system of (G,H)- invariant differential operators

δ = (δ1(∂,x), δ2(∂,x), ..., δm(∂,x))

such that C⟨x; ∂⟩(G,H) is a finitely generated δ -differential field over C.

Proof. The proof is constructive in terms of the system of invariant differential operators. For
any natural k, g ∈ G and δ = g−1∂ due to Theorem 2.4 one has the following representation.

∂
∂⊙2

2!
...

∂⊙k
k!

 =


g 0 0 · · · 0

∂⊙g
2!

g⊙2

2! 0 · · · 0
...

...
... · · · 0

∂⊙k−1⊙g
k! ∗ ∗ · · · g⊙k

k!




δ
δ⊙2

2!
...

δ⊙k

k!

 (3.1)

The number of equations (rows) in this equality is(
m− 1 + 1
m− 1

)
+

(
m− 1 + 2
m− 1

)
+ ...+

(
m− 1 + k
m− 1

)
=

(
m+ k
m

)
− 1.

The number of columns of x⊙l is

(
n− 1 + l
n− 1

)
.

Let us show that whenever 1 ≤ lk1 < lk2 < ... < lkjk is a sequence of integers such that

(
m+ k
m

)
− 1 =

jk∑
i=1

(
n− 1 + lki

n− 1

)
(3.2)

one can construct a nontrivial (G,H)-relative invariant. Indeed in this case for h ∈ H, xh = y

due to (xh)⊙p

p! = x⊙p

p!
h⊙p

p! for any natural p, one has

(
x⊙j1

j1!
,
x⊙j2

j2!
, ...,

x⊙jk

jk!
)Diag(

h⊙j1

j1!
,
h⊙j2

j2!
, ...,

h⊙jk

jk!
) = (

y⊙j1

j1!
,
y⊙j2

j2!
, ...,

y⊙jk

jk!
).
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Due to Lemma 2.3 b) application of (3.1) to this equality results in


∂
∂⊙2

2!
...

∂⊙k
k!

⊙ (
x⊙j1

j1!
,
x⊙j2

j2!
, ...,

x⊙jk

jk!
)

Diag(
h⊙j1

j1!
,
h⊙j2

j2!
, ...,

h⊙jk

jk!
) =


g 0 0 · · · 0

∂⊙g
2!

g⊙2

2! 0 · · · 0
...

...
...

... · · ·
∂⊙k−1⊙g

k! ∗ ∗ · · · g⊙k

k!





δ
δ⊙2

2!
...

δ⊙k

k!

⊙ (
y⊙j1

j1!
,
y⊙j2

j2!
, ...,

y⊙jk

jk!
)

 .

By taking the determinant of both sides of this equality one has

det(h)

∑k
i=1

(
n+ ji − 1

n

)
f∂
k ⟨x⟩ = det(g)

(
m+ k
m+ 1

)
f δ
k ⟨y⟩,

where f∂
k ⟨x⟩ stands for the det


∂ ⊙X

∂⊙2

2! ⊙X
...

∂⊙k

k! ⊙X

, X = (x
⊙j1

j1!
, x

⊙j2

j2!
, ..., x

⊙jk

jk!
), which means that

f∂
k ⟨x⟩ ∈ C⟨x; ∂⟩ is a relative invariant:

fg−1∂
k ⟨xh⟩ = det(g)

−
(

m+ k
m+ 1

)
det(h)

∑k
i=1

(
n+ ji − 1

n

)
f∂
k ⟨x⟩, (3.3)

for any g ∈ G and h ∈ H. Note that to get it we have used the equality

det(
h⊙p

p!
) = det(h)

(
n+ p− 1

n

)

for any square matrix h ∈ Mn,n(1, 1;F ) and natural p [10].
Let us now justify the existence of (infinitely) many values of k for which equality (3.2) holds

true for some 1 ≤ lk1 < lk2 < ... < lkjk .

At any fixed n > 1 the number

(
n− 1 + k
n− 1

)
is the value of n−1-order polynomial (without

a prime divisor)

p[t] =

(
n− 1 + t
n− 1

)
=

(t+ n− 1)(t+ n− 2)...(t+ 1)

(n− 1)!

at t = k . The positive solution of Waring’s problem for polynomials [6] guarantees the exists of

a natural number s such that every, i.e. not only of the form

(
m+ k
m

)
− 1, natural number,

except finite of them, can be represented as a sum of values of this polynomial at s positive
integers. In our case we do not even need jk in (3.2) to be same (s) for different values of k.
Therefore one can find a sequence 1 ≤ k1 < k2 < ... < km+1 of values of k for each of which (3.2)
type equality holds true. For each k = ki we can construct the corresponding relative invariant
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f∂
ki
⟨x⟩ and have the sequence of (G,H)-relative invariants f∂

k1
⟨x⟩, f∂

k2
⟨x⟩, ..., f∂

km+1
⟨x⟩. By the

use of them one can construct a matrix M∂⟨x⟩ consisting of columns

M∂
i ⟨x⟩ =

−∂ ⊙ f∂
ki+1

⟨x⟩(
m+ ki+1

m+ 1

)
f∂
ki+1

⟨x⟩
+

∂ ⊙ f∂
k1
⟨x⟩(

m+ k1
m+ 1

)
f∂
k1
⟨x⟩

,

i = 1, 2, ...,m. Due to the construction the obtained matrix M∂⟨x⟩ ∈ GL∂(m,C⟨x; ∂⟩) is a

nonsingular matrix for which the equality Mg−1∂⟨xh⟩ = g−1M∂⟨x⟩ holds true. It implies that
the commuting system of differential operators

δ = (δ1(∂,x), δ2(∂,x), ..., δm(∂,x)) = M∂⟨x⟩−1∂

is (G,H)-invariant. Therefore C⟨x; ∂⟩(G,H) is a finitely generated δ- differential field over C as
a subfield of the finitely generated δ- differential field C⟨x,M∂⟨x⟩; δ⟩ [5].

This theorem does not provide a method to find a finite system of generators for the δ-
differential field C⟨x; ∂⟩(G,H) over C. We hope that the obtained system of invariant differential
operators can be used to reduce this problem to finding a system of generators of the field of
(not differential) invariants of an action of H as we have done it for patches case in [13]. Note
also that the Theorem 3.4 holds true even if one changes G to any sub groupoid of GL∂(m,F ).

Remark 3.5. It is said that the Waring’s problem for polynomials is valid in the following more
stronger form as well: If an integer valued at nonnegative integers polynomial p[t] with positive
leading coefficient has nor prime divisor then there exists a natural number s such that every
natural number, except finite of them, can be represented as a sum of values of this polynomial
at s distinct positive integers. In this case the existence of representation (3.2) for all k, except
finite of them, is an immediate consequence of it.

Example 3.6. Now as an application of the above presented results let us consider two
dimensional surfaces in R3 that is m = 2, n = 3 case, where H may be any subgroup of GL(3, R).
In this case one has the following two sequences.((

m+ k
m

)
− 1

)
k=1,2,3,...

= {2, 5, 9, 14, 20, 27, 35, 44, 54, ...},

(
n− 1 + i
n− 1

)
i=1,2,3,...

= {3, 6, 10, 15, 21, 28, 36, 45, 55, ...}.

Representing the elements of the first sequence as the sums of different elements of the second
one, when it is possible, one has:

1. 9 = 3 + 6, which implies that k = 3, l31 = 1, l32 = 2 and due to (3.3) for f∂
3 ⟨x⟩ =

det

 ∂ ⊙ (x; x
⊙2

2! )
∂⊙2

2! ⊙ (x; x
⊙2

2! )
∂⊙3

3! ⊙ (x; x
⊙2

2! )

 the equality fg−1∂
3 ⟨xh⟩ = det(g)−10 det(h)5f∂

3 ⟨x⟩ is valid.

2. 27 = 6 + 21, which implies that k = 6, l61 = 2, l62 = 5 and due to (3.3) for

f∂
6 ⟨x⟩ = det



∂ ⊙ (x
⊙2

2! ,
x⊙5

5! )
∂⊙2

2! ⊙ (x
⊙2

2! ,
x⊙5

5! )
∂⊙3

3! ⊙ (x
⊙2

2! ,
x⊙5

5! )
∂⊙4

4! ⊙ (x
⊙2

2! ,
x⊙5

5! )
∂⊙5

5! ⊙ (x
⊙2

2! ,
x⊙5

5! )
∂⊙6

6! ⊙ (x
⊙2

2! ,
x⊙5

5! )


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the equality fg−1∂
6 ⟨xh⟩ = det(g)−56 det(h)39f∂

6 ⟨x⟩ is true.
3. 44 = 6+10+28, which implies that k = 8, l81 = 1, l82 = 3, l83 = 6 and due to (3.3) for f∂

8 ⟨x⟩
the equality fg−1∂

8 ⟨xh⟩ = det(g)−120 det(h)67f∂
8 ⟨x⟩ holds true.

So in this case one has column vectors

M∂
1 ⟨x⟩ =

∂ ⊙ f∂
6 ⟨x⟩

−56f∂
6 ⟨x⟩

− ∂ ⊙ f∂
3 ⟨x⟩

−10f∂
3 ⟨x⟩

, M∂
2 ⟨x⟩ =

∂ ⊙ f∂
8 ⟨x⟩

−120f∂
8 ⟨x⟩

− ∂ ⊙ f∂
3 ⟨x⟩

−10f∂
3 ⟨x⟩

,

the second order square matrix M∂⟨x⟩ consisting of these two columns and the commuting system
of invariant differential operators δ = (δ1, δ2) defined by δ = M∂⟨x⟩−1∂.

So even in this simple case expressions for commuting system of invariant differential operators
δ1, δ2 in terms of initial ∂1, ∂2 and x are quite complicated (nontrivial). May be it is the reason
that even in m = 2, n = 3 case the classical Fundamental Basis theorem didn’t guarantee the
existence of a commuting system of invariant differential operators with the needed properties.

4. Conclusion
In the paper a qualitative improvement of the Fundamental Basis theorem is provided by showing
that the needed invariant system of differential operators can be chosen commuting. A method
to construct the needed system of invariant differential operators is presented as well. The
approach of the paper to the problem is pure algebraic and is applicable in more general settings
than do geometric methods.
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