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Abstract. In 2010, N. Ganikhodjaev proposed the models of ABO and Rh blood groups of
Malaysian people. Based on some numerical simulations, it was showed that the evolution of
ABO blood groups of Malaysian people has a unique stable equilibrium. In this paper, we
analytically prove that the Ganikhodjaev model of ABO blood groups has a unique fixed point.

1. Introduction
A blood group provides an ideal opportunity for the study of human variation without cultural
prejudice. It can be easily classified for many different genetically inherited blood typing systems.
We rarely take blood types into consideration in selecting mates. A few people know their own
type today and no one did prior to 1900. As a result, differences in blood type frequencies
around the world are most likely due to other factors than social discrimination. ABO blood
group is the classification of human blood based on the inherited properties of red blood cells
(erythrocytes) as determined by the presence or absence of the allelesA and B, which are carried
on the surface of the red cells. Persons may thus have group A (which is carrying only A allele),
group B (which is carrying only B allele), group O (which is neither carrying A allele nor B
allele), and group AB (which is carrying both A and B alleles). The ABO blood group system
has been discovered by the Austrian scientist Karl Landsteiner, who found three different blood
types in 1900. He was awarded the Nobel Prize in Medicine in 1930 for his work. When we
donate blood or have surgery, a small sample is usually taken in advance for at least ABO and
Rh systems typing. We have learned a good deal about how common each of the ABO blood
types is around the world. It is quite clear that the distribution patterns are complex. About
21% of all people in the world share the A blood group. The highest frequencies of A are
found in small, unrelated populations, especially the Blackfoot Indians of Montana (30-35%),
the Australian Aborigines (many groups are 40-53%). Overall in the world, the B blood group
is the rarest ABO blood group. Only 16% of humanity have it. Note that it is highest in
Central Asia and lowest among the indigenous peoples of the America and Australia. The O
blood group is very common around the world. About 63% of humans share it. The group O is
particularly high in frequency among the indigenous populations of Central and South America,
where it approaches 100%. The rest of people in the world are sharing AB blood group.

A quadratic stochastic operator which was first studied by Bernstein [1] is a primary source
for investigations of dynamical properties of population genetics [6, 7] in which it describes a
distribution of a species for the next generation if the current distribution of these species was
given. It also has a fascinating application in physics, economics (see [17]), and control system
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(see [14]). For example, in the paper [3], N. Ganikhodjaev described a mathematical model of
the transmission of ABO blood groups as the quadratic stochastic operator. During the period
2007–2008, he collected the current blood group distributions of Malaysian people from more
than 10,000 randomly chosen families in the states of Pahang and Kuala Lumpur. According to
statistics, the current blood distribution in Malaysia was as follows: 20% from A; 29.3% from
B; 8.4% from AB; 42.3% from O. Based on some numerical simulations, the future ABO blood
group distribution of Malaysian people was predicted [3]. Later on this work was continued in
the paper [4]. However, only numerical results were presented in both papers. In this paper, we
present the analytical proof of the main result of [3].

2. Preliminaries

Let ∥x∥1 =
m∑
k=1

|xk| be a norm of a vector x = (x1, · · · , xm) ∈ Rm. We say that x ≥ 0 (resp.

x > 0) if xk ≥ 0 (resp. xk > 0) for all k = 1,m. Let Sm−1 = {x ∈ Rm : ∥x∥1 = 1, x ≥ 0} be the
(m − 1)−dimensional standard simplex. An element of the simplex Sm−1 is called a stochastic
vector. Recall that a square matrix P = (pij)

m
i,j=1 is called stochastic if every row is a stochastic

vector. A square stochastic matrix P = (pij)
m
i,j=1 is called positive if pij > 0, ∀ i, j = 1,m. A

cubic matrix P = (pijk)
m
i,j,k=1 is called stochastic if

m∑
k=1

pijk = 1, pijk ≥ 0, ∀i, j, k = 1,m. Every

cubic stochastic matrix is associated with a quadratic stochastic operator Q : Sm−1 → Sm−1 as
follows

(Q(x))k =
m∑

i,j=1

xixjpijk, ∀ k = 1,m. (2.1)

Let Fix(Q) = {x ∈ Sm−1 : Q(x) = x} be a fixed point set. Due to Brouwer’s theorem,
Fix(Q) ̸= ∅. A fixed point of the quadratic stochastic operator is an equilibrium of the system.

In general, the main problem in the nonlinear operator theory is to study the asymptotic
behavior of the nonlinear operator. This problem was not fully finished even in the class of
quadratic stochastic operators (for more details see [5]). In [10], a special class of the nonlinear
operators was studied as a generalization of a logistic mapping into the higher dimension. A
fixed point set and an omega limiting set of the quadratic stochastic operators defined on the
finite dimensional simplex were deeply studied in the series of papers [2, 4, 12, 15]. Ergodicity
and chaotic dynamics of the quadratic stochastic operators on the finite dimensional simplex
were studied in [9, 11, 13]. In [5, 8], it was given a long self-contained exposition of the recent
achievements and open problems in the theory of the quadratic stochastic operators.

We recall some necessary notions and concepts which will be used in this paper.
The important tool to study a system of polynomial equations is a resultant.
Let us consider two polynomials

f(x) = c0x
4 + c1x

3 + c2x
2 + c3x+ c4. (2.2)

g(x) = d0x
3 + d1x

2 + d2x+ d3. (2.3)

The Sylvester matrix, denoted by Syl(f, g), is defined as follows:

Syl(f, g, x) =



c0 0 0 d0 0 0 0
c1 c0 0 d1 d0 0 0
c2 c1 c0 d2 d1 d0 0
c3 c2 c1 d3 d2 d1 d0
c4 c3 c2 0 d3 d2 d1
0 c4 c3 0 0 d3 d2
0 0 c4 0 0 0 d3


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The resultant of two polynomials f and g, denoted by Res(f, g), is the determinant of the
Sylvester matrix Res(f, g) = det(Syl(f, g)). After simple calculation, we have the following

det(Syl(f, g)) = c0c
2
4d

4
1 − 4c0c

2
4d0d

2
1d2 + 4c0c

2
4d

2
0d1d2 + 2c0c

2
4d

2
0d

2
2 + c0c3c4d0d

2
1d3

− 5c0c3c4d
2
0d2d3 + 4c20c4d0d2d

2
3 − 5c0c1c4d0d1d

2
3 − 4c20c4d1d

2
2d3

+ 2c20c4d
2
1d

2
3 + 3c0c1c4d

2
1d2d3 − 2c0c2c4d

3
1d3 + c20c4d

4
2 − c0c1c4d1d

3
2

+ c0c2c4d
2
1d

2
2 − c0c3c4d

3
1d2 + 3c0c3c4d0d1d

2
2 − 2c0c2c4d0d

3
2

+ 4c0c2c4d0d1d2d3 − 3c0c2c4d
2
0d

2
3 − c20c3d

3
2d3 + 3c20c3d1d2d

2
3 − 3c20c3d0d

3
3

+ c0c1c3d1d
2
2d3 − 2c0c1c3d

2
1d

2
3 − c0c2c3d

2
1d2d3 + c0c2c3d0d1d

2
3 + c0c

2
3d

3
1d3

− 3c0c
2
3d0d1d2d3 + 3c0c

2
3d

2
0d

2
3 − c0c1c3d0d2d

2
3 + 2c0c2c3d0d

2
2d3 + c30d

4
3

− 2c20c2d1d
3
3 − c20c1d2d

3
3 + c0c

2
1d1d

3
3 + c20c2d

2
2d

2
3 − c0c1c2d1d2d

2
3

+ 3c0c1c2d0d
3
3 + c0c

2
2d

2
1d

2
3 − 2c0c

2
2d0d2d

2
3 + c0c1c4d0d

2
2d3 + c21c4d0d

3
2

− 3c21c4d0d1d2d3 + 3c21c4d
2
0d

2
3 − c1c2c4d0d1d

2
2 + 2c1c2c4d0d

2
1d3 + c1c3c4d0d

2
1d2

− c1c3c4d
2
0d1d3 + 3c1c

2
4d

2
0d1d2 − 3c1c

2
4d

3
0d3 + c1c2c4d

2
0d2d3 − 2c1c3c4d

2
0d

2
2

− c1c
2
4d0d

3
1 − c1c

2
2d0d1d

2
3 + c1c2c3d0d1d2d3 + 2c21c3d0d1d

2
3 − c1c

2
3d0d

2
1d3

− 3c1c2c3d
2
0d

2
3 + c21c2d0d2d

2
3 − c21c3d0d

2
2d3 + 2c1c

2
3d

2
0d2d3 − c31d0d

3
3 + c22c4d

2
0d

2
2

− c22c4d
2
0d1d3 − c2c3c4d

2
0d1d2 + 3c2c3c4d

3
0d3 + c2c

2
4d

2
0d

2
1 − 2c2c

2
4d

3
0d2 + c32d

2
0d

2
3

− c22c3d
2
0d2d3 + c2c

2
3d

2
0d1d3 + c23c4d

3
0d2 − c3c

2
4d

3
0d1 − c33d

3
0d3 + c34d

4
0.

(2.4)

Theorem 2.1 ([16]). The resultant of two polynomials with coefficients in an integral domain
is zero if and only if they have a common root in an algebraically closed field containing the
coefficients.

We now recall Sturm’s theorem which expresses the number of distinct real roots of a
polynomial located in an interval in terms of the number of changes of signs of the values
of the Sturm’s sequence at the end points of the interval.

The Sturm sequence of a polynomial p(x) is the following sequence of polynomials of
decreasing degree:

p0(x) := p(x),

p1(x) := p′(x),

p2(x) := −rem(p0(x), p1(x)) = p1(x)q0(x)− p0(x),

p3(x) := −rem(p1(x), p2(x)) = p2(x)q1(x)− p1(x),

...

0 = −rempm(x), pm−1(x).

where rem(pi, pj) and qi are the remainder and the quotient of the polynomial long division of pi
by pj and m is the minimal number of polynomial divisions (never greater than deg(p)) needed
to obtain a zero remainder. That is, successively take the remainders with polynomial division
and change their signs. Since deg(pi+1) < deg(pi) for 0 ≤ i < m, the algorithm terminates.
The final polynomial, pm, is the greatest common divisor of p and its derivative. If p is square
free, it shares no roots with its derivative, hence pm will be a non-zero constant polynomial. A
sequence p0, p1, p2, . . . , pm is called the canonical Sturm chain. Let σ(ξ) be the number of sign
changes (ignoring zeroes) in the sequence p0(ξ), p1(ξ), p2(ξ), . . . , pm(ξ).
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Theorem 2.2 (Sturm’s Theorem, [16]). The number of real zeros of p(x) in (α, β) is σ(α)−σ(β).

3. The Ganikhodjaev Model of ABO Blood Groups
During the period 2007-2008, Professor N. Ganikhodjaev collected the current blood group
distributions of Malaysian people from more than 10 000 randomly chosen families from the
states of Pahang and Kuala Lumpur. According to statistics, the current blood distribution
in Malaysia was as follows: 20% from A; 29.3% from B; 8.4% from AB; 42.3% from O. The
mathematical model of the transmission of ABO blood groups was described as the quadratic
stochastic operator acting on 3D simplex (see [3, 4]).

x
′
A = 0.91x2A + 0.6xAxB + 0.92xAxAB + 0.98xAxO + 0.01x2B

+0.20xBxAB + 0.02xBxO + 0.09x2AB + 0.38xABxO + 0.01x2O
x

′
B = 0.01x2A + 0.76xAxB + 0.32xAxAB + 0.02xAxO + 0.94x2B

+1.26xBxAB + 1.06xBxO + 0.06x2AB + 0.38xABxO + 0.01x2O
x

′
AB = 0.01x2A + 0.50xAxB + 0.72xAxAB + 0.02xAxO + 0.01x2B

+0.44xBxAB + 0.02xBxO + 0.84x2AB + 0.40xABxO + 0.01x2O
x

′
O = 0.07x2A + 0.14xAxB + 0.04xAxAB + 0.98xAxO + 0.04x2B

+0.10xBxAB + 0.90xBxO + 0.01x2AB + 0.84xABxO + 0.97x2O

Theorem 3.1. The quadratic stochastic operator given above has a unique fixed point which
belongs to Ω =

{
x ∈ S3 : 0.08 < xA < 0.15, 0.4 < xB < 0.6, 0.03 < xAB < 0.09, 0.2 < xO < 0.4

}
.

Proof. For the convenience, we use x = (xA, xB, xAB, xO) = (x1, x2, x3, x4). It is easy to see
that any fixed point of the quadratic stochastic operator given above lies inside of the simplex,
i.e., x1, x2, x3, x4 > 0. We now want to show that the following system of equations

x1 = 0.91x21 + 0.01x22 + 0.09x23 + 0.01x24 + 0.6x1x2 + 0.92x1x3 + 0.98x1x4 + 0.2x2x3

+ 0.02x2x4 + 0.38x3x4.

x2 = 0.01x21 + 0.94x22 + 0.06x23 + 0.01x24 + 0.76x1x2 + 0.32x1x3 + 0.02x1x4 + 1.26x2x3

+ 1.06x2x4 + 0.38x3x4.

x3 = 0.01x21 + 0.01x22 + 0.84x23 + 0.01x24 + 0.5x1x2 + 0.72x1x3 + 0.02x1x4 + 0.44x2x3

+ 0.02x2x4 + 0.4x3x4.

x4 = 0.07x21 + 0.04x22 + 0.01x23 + 0.97x24 + 0.14x1x2 + 0.04x1x3 + 0.98x1x4 + 0.10x2x3

+ 0.9x2x4 + 0.84x3x4.

has a unique solution. Since x4 = 1− x1 − x2 − x3, we obtain that
x1 = −0.06x21 − 0.28x23 − 0.38x1x2 − 0.42x1x3 − 0.18x2x3 + 0.96x1 + 0.36x3 + 0.01

x2 = −0.11x22 − 0.31x23 − 0.30x1x2 − 0.06x1x3 − 0.16x2x3 + 1.04x2 + 0.36x3 + 0.01

x3 = 0.45x23 − 0.48x1x2 + 0.32x1x3 + 0.04x2x3 + 0.38x3 + 0.01

. (3.1)

Let x1 = x be a variable and x2 = a, x3 = b be parameters.
It follows from the first equation that

x2 +

(
19

3
a+ 7b+

2

3

)
x+

14

3
b2 − 6b+ 3ab− 1

6
= 0 (3.2)
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and it follows from the second and third equations that

x =
0.11a2 + 0.31b2 + 0.16ab− 0.04a− 0.36b− 0.01

−0.30a− 0.06b
, (3.3)

x =
−0.45b2 + 0.62b− 0.04ab− 0.01

0.48a+ 0.32b
. (3.4)

By equalizing equations (3.3) and (3.4), we get that

0.0528a3 + 0.0722b3 + 0.1a2b+ 0.0626ab2 − 0.0192a2 − 0.078b2

+ 0.0004ab− 0.0078a− 0.0038 = 0. (3.5)

By substituting (3.4) into (3.2), we obtain that

778

1875
a2b2 − 0.7368ab3 − 9892

30000
b4 + 1.2944ab2 + 0.1204b3 + 0.5696a3b+ 0.4896a2b

+
353

3750
ab+ 0.4862b2 − 0.0688a2 − 0.0032a− 109

7500
b+ 0.0001 = 0. (3.6)

Consequently, the system of equations (3.1) has a solution (x1, x2, x3) if and only if the system
of equations (3.5) and (3.6) must have a solution (a, b) in which x2 = a, x3 = b and x is defined
by (3.4). Note that we are looking for all possible solutions (a, b) of the system of equations
(3.5) and (3.6) in which 0 < a, b < 1, 0 < a+ b < 1 such that

0 <
−0.45b2 + 0.62b− 0.04ab− 0.01

0.48a+ 0.32b
< 1, (3.7)

0 < a+ b+
−0.45b2 + 0.62b− 0.04ab− 0.01

0.48a+ 0.32b
< 1. (3.8)

We define two polynomials

h1(y) = α0y
4 + α1y

3 + α2y
2 + α3y + α4, (3.9)

h2(y) = β0y
3 + β1y

2 + β2y + β3 (3.10)

where

α0 = − 9892

30000
, α1 = −0.7368a+ 0.1204, α2 =

1

3
1.2448a2 + 1.2944a+ 0.4862,

α3 = 0.5696a3 + 0.4896a2 +
1

3
0.2824a− 1

3
0.0436, α4 = −0.0688a2 − 0.0032a+ 0.0001,

β0 = 0.0722, β1 = 0.0626a− 0.078, β2 = 0.1a2 + 0.0004a− 0.0038,

β3 = 0.0528a3 − 0.0192a2 − 0.0078a

The simple observation: a pair (a, b) is a solution of the system of equations (3.5) and
(3.6) if and only if y = b is a common root of the two polynomials defined by (3.9) and (3.10).

Due to Theorem 2.1, two polynomials (3.9) and (3.10) have a common root if and only if
their resultant is zero. Let us calculate the resultant of two polynomials (3.9) and (3.10):

p(a) := Res(h1, h2) = −0.00000688699757684925a12 − 0.0000227411808131865a11

− 0.00003667390703892109a10 − 0.00004075705014039745a9

− 0.00002866410711261251a8 − 0.00000663625825939163a7

+ 0.00000584441237891252a6 + 0.00000521421301017348a5

+ 0.00000169186945948385a4 + 0.00000024980702870395a3

+ 0.00000001513772985017a2 + 0.00000000024893985432a

+ 0.00000000000121535388. (3.11)
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We now want to show by means of Sturm’s Theorem that p has a unique root in [0, 1].
Let us calculate the canonical Sturm chain of the polynomial (3.11)

p0(a) = −0.00000688699757684925a12 − 0.0000227411808131865a11

−0.00003667390703892109a10 − 0.00004075705014039745a9

−0.00002866410711261251a8 − 0.00000663625825939163a7

+0.00000584441237891252a6 + 0.00000521421301017348a5

+0.00000169186945948385a4 + 0.00000024980702870395a3

+0.00000001513772985017a2 + 0.00000000024893985432a

+0.00000000000121535388,

p1(a) = −0.000082643970922191a11 − 0.0002501529889450515a10

−0.0003667390703892109a9 − 0.00036681345126357705a8

−0.00022931285690090008a7 − 0.00004645380781574141a6

+0.00003506647427347518a5 + 0.00002607106505086735a4

+0.00000676747783793544a3 + 0.00000074942108611186a2

+0.00000003027545970034a+ 0.00000000024893985433,

p2(a) = 0.00000037609142076049a10 + 0.00000177961548934657a9

+0.00000114334970673463a8 − 0.0000024932363898563a7

−0.00000398743255665794a6 − 0.00000223751938795324a5

−0.00000053008069143829a4 − 0.00000003217109672327a3

+0.00000000457010487098a2 + 0.00000000046604785482a

+0.00000000000449305429,

p3(a) = 0.00078225025051382988a9 + 0.00134305877797089479a8

+0.00017140560958472293a7 − 0.00095580681574198541a6

−0.00075689965182997732a5 − 0.00021760319803868965a4

−0.00001982504788790518a3 + 0.0000008604161052218a2

+0.00000014334804119511a+ 0.00000000143444073614,

p4(a) = 0.00000088586724688229a8 + 0.00000228216031456409a7

+0.00000223805550352612a6 + 0.00000103574861505588a5

+0.00000020512611177995a4 + 0.00000000384770335718a3

−0.00000000325398406321a2 − 0.00000000025757045472a

−0.00000000000241378479,

p5(a) = 0.00007324940713243183a7 + 0.00017225002007757511a6

+0.00015214345301715362a5 + 0.00006535841671702326a4

+0.00001403217062030656a3 + 0.00000138114851832599a2

+0.00000004995584862444a+ 0.00000000039705370558,

6

37th International Conference on Quantum Probability and Related Topics (QP37)                         IOP Publishing
IOP Conf. Series: Journal of Physics: Conf. Series 819 (2017) 012008         doi:10.1088/1742-6596/819/1/012008



p6(a) = 0.0000000698912522464a6 + 0.00000016801008927898a5

+0.00000014213423561383a4 + 0.00000005097650681988a3

+0.00000000761027043401a2 + 0.00000000039808603141a

+0.00000000000349244959,

p7(a) = −0.00001239317506737994a5 − 0.00001972687140636451a4

−0.00000885166720912287a3 − 0.00000138126383018892a2

−0.00000006812566118993a− 0.00000000058857113479,

p8(a) = −0.00000000186662811146a4 − 0.00000000264641916971a3

−0.00000000089991568145a2 − 0.00000000008275263677a

−0.0000000000007968057,

p9(a) = −0.0000001804214420304a3 − 0.00000020777576976095a2

−0.00000003276359889319a− 0.00000000033192915659,

p10(a) = −0.00000000001115865255a2 − 0.00000000001089506558a

−0.00000000000011715126,

p11(a) = 0.00000000000004078176a+ 0.00000000000000040999

p12(a) = 0.00000000000000874909.

We now calculate the number of sign changes σ(0) and σ(1) in the sequences
{p0(0), p1(0), p2(0), · · · , p12(0)} and {p0(1), p1(1), p2(1), · · · , p12(1)}, respectively.

By simple calculation

p0(0) = 0.00000000000121535389,

p1(0) = 0.00000000024893985433,

p2(0) = 0.00000000000449305429,

p3(0) = 0.00000000143444073614,

p4(0) = −0.00000000000241378479,

p5(0) = 0.00000000039705370558,

p6(0) = 0.00000000000349244959,

p7(0) = −0.00000000058857113479,

p8(0) = −0.0000000000007968057,

p9(0) = −0.00000000033192915659,

p10(0) = −0.00000000000011715126,

p11(0) = 0.00000000000000040999,

p12(0) = 0.00000000000000874909,

we then obtain that σ(0) = 4.
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Again, by simple calculation

p0(1) = −0.00012934381117902623,

p1(1) = −0.00127343118358872744,

p2(1) = −0.00000597634286000726,

p3(1) = 0.00034758512315804309,

p4(1) = 0.00000664729152686279,

p5(1) = 0.00047846496898514639,

p6(1) = 0.0000004390239328741,

p7(1) = −0.00004242169174538096,

p8(1) = −0.00000000549651240509,

p9(1) = −0.00000042129273984113,

p10(1) = −0.00000000002217086939,

p11(1) = 0.00000000000004119175,

p12(1) = 0.00000000000000874909,

we then obtain that σ(1) = 3.
Thus, due to Sturm’s Theorem 2.2, the number of roots of the polynomial (3.11) in [0, 1] is

σ(0)−σ(1) = 4−3 = 1. Thus, the polynomial (3.11) has a unique root a0 in [0, 1] which belongs
to the interval (0.4, 0.6). Approximate value of a0 can be calculated by using some software
like MAPLE. Moreover, b is a common root of the polynomials (3.9) and (3.10) such that the
inequalities (3.7) and (3.8) are satisfied. Some calculations shows that the inequalities (3.7) and
(3.8) are satisfied for only one common root of the polynomials (3.9) and (3.10). In other words,
the inequalities (3.7) and (3.8) are satisfied for a unique pair (a0, b0). By means of equation
(3.4), we can find a unique value of x. It means that the system of equations (3.1) has a unique
solution (x0, a0, b0). Therefore, a point (x0, a0, b0, 1− x0 − a0 − b0) is a unique fixed point of the
quadratic stochastic operator. This completes the proof
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