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Abstract. In this paper, we consider the Ising-XY model with competing interactions on the
Cayley tree of order two. This model can be seen as a non-commutative (i.e. J-XY -interactions
on next-neighbor vertices) perturbation of the classical Ising model on the Cayley tree. For the
considered model we establish the existence of three translation-invariant quantum Markov
chains. We notice that if the XY -interactions vanish, i.e. J = 0, then one gets the Ising model.
If the classical Ising model vanishes in the considered model, then we obtain XY -model for
which it turns out there exists only one translation invariant QMC.

1. Introduction
In [1] a quantum analogues of Markov chains were constructed and they were called by quantum
Markov chains (QMC) which are defined on infinite tensor product algebras. The reader is
referred to [5, 17] and the references cited therein, for recent developments of the theory and
the applications.

In [3]-[6],[8, 19] it was attempted to construct quantum analogues of classical Markov fields.
In [7] it has been proposed a definition of quantum Markov states and chains, which extend
all known ones. We point out that one of the basic open problems in quantum probability is
the construction of a theory of quantum Markov fields, that is quantum process with multi-
dimensional index set. This program concerns the generalization of the theory of Markov fields
(see [15],[18])) to non- commutative setting, naturally arising in quantum statistical mechanics
and quantum field theory.

First attempts to investigate QMC over such trees was done in [14], such studies were related
to investigation of thermodynamic limit of valence-bond-solid models on a Cayley tree [16]. The
mentioned considerations naturally suggest the study of the following problem: the extension
to fields of the notion of generalized QMC. In [13, 12], we have introduced a hierarchy of
notions of Markovianity for states on discrete infinite tensor products of C∗–algebras and for
each of these notions we constructed some explicit examples. In [21, 20, 24, 25] noncommutative
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extensions of classical Markov fields, associated with Ising and Potts models on a Cayley tree,
were investigated.

In this paper, we consider the Ising-XY model with competing interactions on the Cayley
tree of order two. This model can be seen as a non-commutative (i.e. J-XY -interactions on
next-neighbor vertices) perturbation of the classical Ising model on the Cayley tree. For the
considered model we are going to establish the existence of translation invariant quantumMarkov
chains (see [9]). We notice that if the XY -interactions vanish, i.e. J = 0, then one gets the Ising
model for which the corresponding QMC has been studied in [10], and shown the existence of
the phase transition in the sense of [9]. We point out that if one considers the Ising type next
neighbor interactions, then the corresponding QMC has been investigated in [22, 23]. In the
present paper, we establish the existence (under some conditions) of three translation invariant
QMC for the considered model. If the classical Ising model vanishes in the considered model,
then we obtain XY -model for which it turns out there exists only one translation invariant
QMC.

2. Preliminaries
Let Γk

+ = (L,E) be a semi-infinite Cayley tree of order k ≥ 1 with the root x0 (i.e. each vertex

of Γk
+ has exactly k + 1 edges, except for the root x0, which has k edges). Here L is the set

of vertices and E is the set of edges. The vertices x and y are called nearest neighbors and
they are denoted by l =< x, y > if there exists an edge connecting them. A collection of the
pairs < x, x1 >, . . . , < xd−1, y > is called a path from the point x to the point y. The distance
d(x, y), x, y ∈ V , on the Cayley tree, is the length of the shortest path from x to y.

Recall a coordinate structure in Γk
+: every vertex x (except for x0) of Γk

+ has coordinates
(i1, . . . , in), here im ∈ {1, . . . , k}, 1 ≤ m ≤ n and for the vertex x0 we put (0). Namely, the
symbol (0) constitutes level 0, and the sites (i1, . . . , in) form level n (i.e. d(x0, x) = n) of the
lattice (see Fig. 1).

Let us set

Wn = {x ∈ L : d(x, x0) = n}, Λn =

n∪
k=0

Wk, Λ[n,m] =

m∪
k=n

Wk, (n < m)

En =
{
< x, y >∈ E : x, y ∈ Λn

}
, Λc

n =

∞∪
k=n

Wk

For x ∈ Γk
+, x = (i1, . . . , in) denote

S(x) = {(x, i) : 1 ≤ i ≤ k}.

Here (x, i) means that (i1, . . . , in, i). This set is called a set of direct successors of x.
Two vertices x, y ∈ V is called one level next-nearest-neighbor vertices if there is a vertex

z ∈ V such that x, y ∈ S(z), and they are denoted by > x, y <. In this case the vertices x, z, y
was called ternary and denoted by < x, z, y >.

Let us define on Γk
+ a binary operation ◦ : Γk

+ × Γk
+ → Γk

+ as follows: for any two elements
x = (i1, . . . , in) and y = (j1, . . . , jm) put

x ◦ y = (i1, . . . , in) ◦ (j1, . . . , jm) = (i1, . . . , in, j1, . . . , jm) (1)

and
x ◦ x0 = x0 ◦ x = (i1, . . . , in) ◦ (0) = (i1, . . . , in). (2)
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By means of the defined operation Γk
+ becomes a noncommutative semigroup with a unit.

Using this semigroup structure one defines translations τg : Γk
+ → Γk

+, g ∈ Γk
+ by

τg(x) = g ◦ x. (3)

It is clear that τ(0) = id.
The algebra of observables Bx for any single site x ∈ L will be taken as the algebra Md of the

complex d× d matrices. The algebra of observables localized in the finite volume Λ ⊂ L is then
given by BΛ =

⊗
x∈Λ

Bx. As usual if Λ1 ⊂ Λ2 ⊂ L, then BΛ1 is identified as a subalgebra of BΛ2

by tensoring with unit matrices on the sites x ∈ Λ2 \ Λ1. Note that, in the sequel, by BΛ,+ we
denote the positive part of BΛ. The full algebra BL of the tree is obtained in the usual manner
by an inductive limit

BL =
∪
Λn

BΛn .

In what follows, by S(BΛ) we will denote the set of all states defined on the algebra BΛ.
Consider a triplet C ⊂ B ⊂ A of unital C∗-algebras. Recall [2] that a quasi-conditional

expectation with respect to the given triplet is a completely positive (CP) unital linear map
E : A → B such that E(ca) = cE(a), for all a ∈ A, c ∈ C.

Definition 2.1 ([13]). A state φ on BL is called a forward quantum Markov chain (QMC),
associated to {Λn}, if for each Λn, there exist a quasi-conditional expectation EΛc

n
with respect

to the triplet
BΛc

n+1
⊆ BΛc

n
⊆ BΛc

n−1
(4)

and a state φ̂Λc
n
∈ S(BΛc

n
) such that for any n ∈ N one has

φ̂Λc
n
|BΛn+1\Λn

= φ̂Λc
n+1

◦ EΛc
n+1

|BΛn+1\Λn
(5)

and
φ = lim

n→∞
φ̂Λc

n
◦ EΛc

n
◦ EΛc

n−1
◦ · · · ◦ EΛc

1
(6)

in the weak-* topology.

Note that (5) is an analogue of the DRL equation from classical statistical mechanics
[15, 18, 26], and QMC is thus the counterpart of the infinite-volume Gibbs measure.

3. Construction of Quantum Markov Chains on Cayley tree
In this section we are going to provide a construction of a forward quantum Markov chain which
contain competing interactions (see [9, 11]). In this section we recall some notations.

Let us rewrite the elements of Wn in the following order, i.e.

−→
Wn :=

(
x
(1)
Wn

, x
(2)
Wn

, · · · , x(|Wn|)
Wn

)
.

In what follows, by ◦∏ we denote an ordered product, i.e.

◦
n∏

k=1

ak = a1a2 · · · an,

where elements {ak} ⊂ BL are multiplied in the indicated order. This means that we are not
allowed to change this order.
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Note that each vertex x ∈ L has interacting vertices {x, (x, 1), . . . , (x, k)}. Assume that each
edges < x, (x, i) > (i = 1, . . . , k) operators K<x,(x,i)> ∈ Bx ⊗ B(x,i) is assigned, respectively.
Moreover, for each competing vertices > (x, i), (x, i + 1) < and < x, (x, i), (x, i + 1) >
(i = 1, . . . , k) the following operators are assigned:

L>(x,i),(x,i+1)< ∈ B(x,i) ⊗ B(x,i+1), M(x,(x,i),(x,i+1)) ∈ Bx ⊗ B(x,i) ⊗ B(x,i+1).

We would like to define a state on BΛn with boundary conditions ω0 ∈ B+
(0) and {hx ∈ B+

x :

x ∈ L}.
For each n ∈ N denote

Ax,(x,1),...,(x,k) =
(◦ k∏

i=1

Kx,(x,i)

)(◦ k∏
i=1

L>(x,i),(x,i+1)<

)(◦ k∏
i=1

M(x,(x,i),(x,i+1))

)
, (7)

K[m,m+1] :=
∏

x∈
−→
Wm

Ax,(x,1),...,(x,k), 1 ≤ m ≤ n, (8)

h1/2
n :=

∏
x∈

−→
Wn

(hx)1/2, hn = h1/2
n (h1/2

n )∗ (9)

Kn := ω
1/2
0

n−1∏
m=1

K[m,m+1]h
1/2
n (10)

Wn] := KnK
∗
n (11)

One can see that Wn] is positive.
In what follows, by TrΛ : BL → BΛ we mean normalized partial trace (i.e. TrΛ(1IL) = 1IΛ,

here 1IΛ =
⊗
y∈Λ

1I), for any Λ ⊆fin L. For the sake of shortness we put Trn] := TrΛn .

Let us define a positive functional φ
(n)
w0,h

on BΛn by

φ
(n)
w0,h

(a) = Tr(Wn+1](a⊗ 1IWn+1)), (12)

for every a ∈ BΛn . Note that here, Tr is a normalized trace on BL (i.e. Tr(1IL) = 1).

To get an infinite-volume state φ on BL such that φ⌈BΛn
= φ

(n)
w0,h

, we need to impose some

constrains to the boundary conditions
{
w0,h

}
so that the functionals {φ(n)

w0,h
} satisfy the

compatibility condition, i.e.

φ
(n+1)
w0,h

⌈BΛn
= φ

(n)
w0,h

. (13)

Theorem 3.1. [11] Assume that for every x ∈ L and triple {x, (x, i), (x, i+1)} (i = 1, . . . , k−1)
the operators K<x,(x,i)>, L>(x,i),(x,i+1)<, M(x,(x,i),(x,i+1)) are given as above. Let the boundary
conditions w0 ∈ B(0),+ and h = {hx ∈ Bx,+}x∈L satisfy the following conditions:

Tr(ω0h
(0)) = 1, (14)

Trx]
(
Ax,(x,1),...,(x,k)

◦
k∏

i=1

h(x,i)A∗
x,(x,1),...,(x,k)

)
= hx, for every x ∈ L, (15)

where as before Ax,(x,1),...,(x,k) is given by (7). Then the functionals {φ(n)
w0,h

} satisfy the

compatibility condition (13). Moreover, there is a unique forward quantum Markov chain φw0,h

on BL such that φw0,h = w − lim
n→∞

φ
(n)
w0,h

.
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Corollary 3.2. If (14),(15) are satisfied then one has φ
(n)
w0,h

(a) = Tr(Wn](a)) for any a ∈ BΛn.

Our goal in this paper is to establish the existence of translation-invariant QMC for the
considered model (see next section).

4. QMC associated with Ising-XY model with competing interactions
In this section, we define the model and formulate the main results of the paper. In what follows
we consider a semi-infinite Cayley tree Γ2

+ = (L,E) of order two. Our starting C∗-algebra is the
same BL but with Bx = M2(C) for all x ∈ L. By σu

x , σ
u
y , σ

u
z we denote the Pauli spin operators

for at site u ∈ L. Here

1I(u) =

(
0 1
1 0

)
, σu

x =

(
0 1
1 0

)
, σu

y =

(
0 −i
i 0

)
, σu

z =

(
1 0
0 −1

)
.

For every vertices (u, (u, 1), (u, 2)) we put

K<u,(u,i)> = exp{J0βH<u,(u,i)>}, i = 1, 2, J0 > 0, β > 0, (16)

L>(u,1),(u,2)< = exp{JβH>(u,1),(u,2)<}, J > 0, (17)

where

H<u,(u,1)> =
1

2

(
1I(u) ⊗ 1I(u,1) + σ(u)

z ⊗ σ(u,1)
z

)
, (18)

H>(u,1),(u,2)< =
1

2

(
σ(u,1)
x ⊗ σ(u,2)

x + σ(u,1)
y ⊗ σ(u,2)

y

)
. (19)

Furthermore, we assume that M(u,(u,i),(u,i+1)) = 1I (i = 1, 2, . . . , k) for all u ∈ L.
The defined model is called the Ising-XY model with competing interactions per vertices

(u, (u, 1), (u, 2)).

Remark 4.1. Note that if we take J = 0, then one gets the Ising model on Cayley tree which
has been studied in [10] and if we take J0 = 0 we get the XY-model on the interactions.

One can calculate that for m ∈ N

Hm
<u,v> = H<u,v> =

1

2

(
1I(u)1I(v) + σ(u)σ(v)

)
, (20)

H2m
>(u,1),(u,2)< = H2

>(u,1),(u,2)< =
1

2
(1I(u,1) ⊗ 1I(u,2) − σ(u,1)

z ⊗ σ(u,2)
z ) (21)

H2m−1
>(u,1),(u,2)< = H>(u,1),(u,2)< (22)

Therefore, one finds
K<u,(u,i)> = K01I

(u) ⊗ 1I(u,i) +K3σ
(u)
z ⊗ σ(u,i)

z

L>(u,1),(u,2)< = 1I(u,1) ⊗ 1I(u,2) + sinh(Jβ)H>(u,1),(u,2)< + (cosh(Jβ)− 1)H2
>(u,1),(u,2)<

where

K0 =
exp J0β + 1

2
, K3 =

J0 expβ − 1

2
,
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Hence, from (7) for each x ∈ L we obtain

A(u,(u,1),(u,2)) = γ11I
(u) ⊗ 1I(u,1) ⊗ 1I(u,2) + γ21I

u ⊗ σ
(u,1)
x ⊗ σ

(u,2)
x (23)

+γ21I
(u) ⊗ σ

(u,1)
y ⊗ σ

(u,2)
y + γ31I

(u) ⊗ σ
(u,1)
z ⊗ σ

(u,2)
z (24)

+δ1σ
(u)
z ⊗ 1I(u,1) ⊗ σ

(u,2)
z + δ1σ

(u)
z ⊗ σ

(u,1)
z ⊗ 1I(u,2) (25)

where γ1 =
1
4 [exp(2J0β) + 1 + 2 exp(J0β) cosh(Jβ)], γ2 =

1
2exp(J0β) sinh(Jβ).

γ3 =
1
4 [exp(2J0β) + 1− 2 exp(J0β) cosh(Jβ)], δ1 =

1
4(exp(2J0β)− 1).

Recall that a function {hu} is called translation-invariant if one has hu = hτg(u), for all
u, g ∈ Γ2

+. Clearly, this is equivalent to hu = hv for all u, v ∈ L.
In what follows, we restrict ourselves to the description of translation-invariant solutions of

(14),(15). Therefore, we assume that: hu = h for all u ∈ L, where

h =

(
h11 h12
h21 h22

)
.

Then we have

h = Tru]A(u,(u,1),(u,2))[1I
(u) ⊗ h⊗ h]A∗

(u,(u,1),(u,2))

= [C1Tr(h)
2 + C2Tr(σzh)

2]1I(u) + C3Tr(h)Tr(σzh)σ
(u)
z . (26)

where 
C1 =

1
4(exp(4J0β) + 1) + 1

2 exp(2J0β) cosh(2Jβ);

C2 =
1
4(exp(4J0β) + 1)− 1

2 exp(2J0β) cosh(2Jβ);

C3 =
1
2(exp(4J0β)− 1).

Now taking into account

Tr(h) =
h11 + h22

2
, Tr(σzh) =

h11 − h22
2

the equation (26) is reduced to the following one Tr(h) = C1Tr(h)
2 + C2Tr(σh)

2,
Tr(σh) = C3Tr(h)Tr(σh),
h21 = 0, h12 = 0.

(27)

The obtained equation implies that a solution h is diagonal, and ω0 could be also chosen diagonal,
through the equation. In what follows, we always assume that h21 = 0, h12 = 0. In the next
sections we are going to examine (27).

5. Existence of QMC associated with the model.
In this section we are going to solve (27), which yields the existence of QMC associated with
the model.
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5.1. Case h11 = h22 and associate QMC
Assume that h1,1 = h2,2 , then (27) is reduced to

h11 = h22 =
1

C1
.

Then putting α = 1
C1

we get

hα =

(
α 0
0 α

)
(28)

Proposition 5.1. The pair (ω0, {hu = hα|u ∈ L}) with ω0 =
1
α1I, hu = hα, ∀u ∈ L, is solution

of (14),(15). Moreover the associated QMC can be written on the local algebra BL,loc by:

φα(a) = α2n−1Tr

(
a

n−1∏
i=0

K[i,i+1]K
∗
[i,i+1]

)
, ∀a ∈ BΛn . (29)

5.2. Case h11 ̸= h22 and associate QMC
Assume that h11 ̸= h22, put θ = exp(2β).

the equation (27) is reduced to
h11+h22

2 = 1
C3

,

(h11−h22
2 )2 = C3−C1

C2.C2
3
,

(30)

Lemma 5.2. Let

∆(θ) =
C3 − C1

C2
=

θ2J0 − θJ0(θJ + θ−J)− 3

θ2J0 − θ0(θJ + θ−J) + 1
(31)

Then for every J ∈ R \ {−J0, J0}, there exists θ0 (depend on J) such that ∆(θ) > 0, whenever
θ ≥ θ0.

In the sequel let be fixed J ∈ R \ {−J0, J0}.
Proposition 5.3. Assume that ∆(θ) > 0. Then the equation (27) has two solutions given by:

h = ξ01I + ξ3σ, (32)

h′ = ξ01I− ξ3σ, (33)

where

ξ0 =
1

C3
=

2

θ2J0 − 1
, ξ3 =

√
∆(θ)

C3
=

2
√

∆(θ)

θ2J0 − 1
(34)

From (14) we find that ω0 = 1
ξ0
1I ∈ B+s. Therefore, the pairs

(
ω0, {h(u) = h, u ∈ L}

)
and(

ω0, {h(u) = h′, u ∈ L}
)
define two solutions of (14),(15). Hence, they define two QMC φ1 and

φ2, respectively. Namely, for every a ∈ BΛn one has

φ1(a) = Tr
(
ω0K[0,1] · · ·K[n−1,n]hnK

∗
[n−1,n] · · ·K

∗
[0,1]a

)
(35)

φ2(a) = Tr
(
ω0K[0,1] · · ·K[n−1,n]h

′
nK

∗
[n−1,n] · · ·K

∗
[0,1]a

)
. (36)

Hence, we have the following

Theorem 5.4. The following statements hold:

(i) if ∆(θ) ≤ 0, then there is a unique translation invariant QMC φα;

(ii) if ∆(θ) > 0, then there are at least three translation invariant QMC φα, φ1 and φ2.
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