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Abstract. ZnO thin films were prepared on glass substrate by sol-gel spin-coating method 

using zinc-acetate dihydrate as precursor. Effect of precursor concentration on the 

morphological and structural of the films was investigated. The diffraction patterns of X-ray 

diffraction (XRD) characterization indicated that all of ZnO thin films were polycrystalline 

with a hexagonal wurtzite crystal structure. The peaks were indexed to (100), (002) and (101) 

planes. Intensity of all diffraction peaks increased and became broader in full width at half 

maximum (FWHM) values with increasing precursor concentration. The calculation of texture 

coefficient (TC) indicated that ZnO thin films exhibited the preferential orientation growth 

along the c-axis. Increasing precursor concentration resulted in decreasing crystalline size and 

crystallization of the film. The lattice constants (a and c) and d-spacing also changed as 

function of precursor concentration. It was demonstrated by the bond length, volume per unit 

cell, lattice strain and dislocation density. The scanning electron microscopy (SEM) images of 

surface morphology of the films confirmed the results of XRD characterization. The grain size 

of ZnO thin films decreased as result of increasing precursor concentration. Cross-section of 

SEM images showed that the thickness of ZnO thin film increases from 149.4 nm to 447.7 nm 

with increasing precursor concentration. This works shown that morphological and structural 

of ZnO thin films prepared using sol-gel spin coating methods were strongly influenced by 

precursor concentration.  

1. Introduction 

In recent years, many researchers have been studied extensively wide-band gap materials such as zinc 

oxide (ZnO) because of their application in optoelectronic devices. ZnO has a wide and direct band 

gap (3.37 eV) at room temperature with hexagonal wurtzite structure [1-3]. Besides that, it has much 

larger exciton binding energy (60 meV) compared to gallium nitride (26 meV) at room temperature 

[1]. The other advantage of ZnO is simpler crystal-growth technology, resulting in a potentially lower 

cost for ZnO-based devices [4]. Therefore, ZnO is very interesting for various fields of industrial and 

high-technological applications.  

ZnO thin films have elicited much interest due to their application, as transparent conducting 

oxides (TCO) [5] and the window layer in solar cell [6]. Applications of ZnO thin films as the film 

bulk acoustic resonator (FBAR) filter [7] and surface acoustic wave (SAW) device [8] have also been 
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investigated. This is due to an excellent piezoelectric property of ZnO thin film and a high optical 

transmittance in the visible region. ZnO thin films can be prepared using various methods, such as 

magnetron sputtering technique [5, 9], molecular beam epitaxy (MBE) [10], metal-organic chemical 

vapour deposition (MOCVD) [11], pulsed laser deposition (PLD) [12], spray pyrolysis [13], ultrasonic 

spray [2] and sol gel process [3, 14]. However, the sol-gel method is more convenient among other 

methods, such as low cost, accurate compositional control, low crystallization temperature, 

homogeneity at the molecular level, and easy reproducibility [2].  

In the sol-gel spin coating process, the characteristic of ZnO thin films was influenced by solvent, 

precursor concentrations, chemical for stabilizer, pre-annealing, post-annealing, annealing atmosphere 

and film thickness [1-3, 15]. Kim et al. prepared ZnO thin films using sol-gel spin coating method at 

various precursor concentrations (0.3-1.3 M) [16]. The pre-heating and post-heating temperatures of 

samples were 250C and 650C, respectively. The ZnO thin films with precursor concentration of 0.7 

M have a higher peak intensity on the (002) orientation compared to the other samples. Another work 

by Kamaruddin et al. showed that ZnO thin film deposited on a glass by sol-gel spin coating method at 

different precursor concentrations (0.3-0.7M) and then followed by annealing at 450°C for 1 h [1]. The 

result showed that the grain size, root mean square (RMS) roughness, crystalline size, crystallinity and 

transparency of ZnO thin films increased with increasing precursor concentration. Both of previous 

studies used Isopropanol and 2-Methoxyethanol as solvent and monoethanolamine (MEA) for 

stabilizer. However, fabrication of ZnO thin films derived from sol-gel spin coating method with 

methanol and ethanolamine as solvent and stabilizer, respectively is still rare. The effect of precursor 

concentration on the thickness of films has also not been reported.  

In this work, ZnO thin films from zinc acetate-dihydrate-methanol-ethanolamine solution were 

deposited on glass by sol-gel spin coating method. The concentration of precursor solutions was varied 

from 0.5 to 1 M. All films were pre-heated at 150C for 1 hour and post-heated (annealed) in the 

furnace at 800C for 1 hour. The influence of precursor concentrations on the morphology and 

structural of ZnO thin films was discussed. 

2. Experimental Details 

ZnO thin films were deposited onto glass substrate using sol-gel spin coating methods. The solution 

for ZnO thin films was prepared using zinc acetate dihydrate (Zn(CH3COO)22H2O), ethanol and 

ethanolamine (NH2CH2CH2OH) as a precursor, solvent and stabilizer, respectively. The concentration 

of the precursor solutions containing zinc acetate dehydrate, ethanol and ethanolamine was varied 

from 0.5 M to 1 M and the molar ratio of zinc acetate dehydrate ethanolamine (NH2CH2CH2OH) was 

maintained at 1:1. The resulting solution was stirred at room temperature for 1 h using a magnetic 

stirrer at 300 rpm. Finally, the solution was aged for 3 days before it was spin coated onto glass 

substrate. Prior to the deposition process, a glass substrate was cleaned sequentially with acetone, 

methanol and DI water in an ultrasonic bath. The deposition was carried out using a spin coater with a 

speed of 3000 rpm for 60 s. After coating, ZnO thin films were pre-annealed at 300C for 1 h, 

followed by post-annealing at 800C for 1 h in air atmosphere. The structural analysis of ZnO thin 

films was carried out using a Smartlab Rigaku X-ray diffractometer with a CuK ( = 1.5406 Å) as an 

X-ray source. The lattice parameters, d-spacing, texture coefficient (TC), crystalline size (D), lattice 

strain (), dislocation density () were calculated from the XRD data. Morphology studies were 

carried out using a scanning electron microscope (SEM) (Hitachi High-Tech Co. Ltd, Japan). 

3. Results and Discussion 

The XRD patterns of ZnO thin films deposited on glass substrates using sol-gel spin coating method 

with various precursor concentrations are shown in the figure 1. The XRD patterns reveal that the 

three main diffraction peaks belong to ZnO with (100), (002) and (101) planes according to a JCPDS 

card No. ICDD-01-078-3315. No impurity peaks of Zn metallic are detected in the XRD patterns. The 

result indicates that the ZnO thin films are polycrystalline in nature with a hexagonal wurtzite crystal 

structure [1, 9]. Based on figure 1, all diffraction peak of ZnO thin films with the precursor 
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concentration of 0.5 M have the lowest intensities. In general, the intensity of all diffraction peaks 

increases with increasing precursor concentration, as shown in figure 1. However, further analysis of 

XRD results indicates that the preferential crystal growth orientation is along (002) plane. The 

preferential crystal orientation can be obtained from texture coefficient (TC), which is calculated using 

the Equation as shown below, [9]. 
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where I(hkl) is the XRD intensity from the thin film, n is the number of reflections observed in the XRD 

pattern, and Ir(hkl) is the intensity of the reference. A detail of the TC coefficient with variation of 

precursor concentrations is shown in Table 1. The value of TC indicates the maximum preferred 

orientation of the films along diffraction plane [9, 17]. As show in Table 1, all ZnO thin films have 

texture coefficients relatively (>1) higher value along the (002) plane. It was confirmed by the 

preferential orientation along the c-axis. The minimization of surface energy and internal stress 

influences the preferential orientation of the crystal [18]. The growth of the film along the c-axis as a 

result of the highest atomic density was found along the (002) plane. This could be related to the 

dominant crystal growth on the c-orientation. Previous work by Kamaruddin et al. shows a different 

result that the ZnO thin film has preferential growth along (101) planes with increasing precursor 

concentrations (0.3-0.7) [1]. This may be due to the different in the annealing temperature. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. XRD patterns of ZnO thin films with various precursor concentrations 

and annealed at 800C. 
 

The lattice parameters, a and c, of hexagonal phase was estimated according to the peak position of 

phases and the following equation [15], 

 22
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where  is the X-ray wavelength of 1.5418 Å,  is a Bragg diffraction angle of the (002) peak and h k l 

is Miller indexes. The results are given in Table 1. The value of lattice constants (a and c) in this work 

changes as increasing precursor concentration with the variation different in the range of 0.004-0.027 
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Å, while the theoretical values (ICDD-01-078-3315) of a and c are 3.249 Å and 5.205 Å, respectively. 

The stress occurrence in the thin film was attributed to the different in the lattice constant [18]. 

The d-spacing of different crystal plane (h k l) for the hexagonal structure is determined using the 

equation [9, 15] 
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The values of d-spacing in this work (as shown in Table 1) are larger than un-stress ZnO bulk (2.602 

Å) [15], which indicate the presence of strain fields within the non-equilibrium grain boundaries inside 

of crystallite. 

The Zn–O bond length (L) has been calculated using the following relationship [19], 

      222 213 cuaL    (5) 

where u = (a
2
/3c

2
) + 0.25 is the potential parameter of the hexagonal structure. The volume (V) of unit 

cell of hexagonal system has been calculated from the equation [19]. 

 caV  2866.0   (6) 

As can be seen in Table 1, the Zn-O bond length increases with increasing the precursor concentration, 

which is the value in the range of 1.9651-1.9745Å. Compared to the results of previous studies, this 

Zn-O bond length is slightly smaller.  Ilican et al., [20] reported that the Zn-O bond length is 1.9767 Å 

in the unit cell of ZnO and neighbouring atoms. The other work by Fang et al. [14], reported the Zn-O 

bond length is 1.9781 Å. In this work, the lattice volume of ZnO thin film increases with increasing 

precursor concentration. The volumes of ZnO thin films in this work are smaller than the result by 

Fang et al. [14]. Higher post-annealing temperatures affect the crystal volume of ZnO thin films. 

These also result in volume shrinkage of grain size, affecting the bond length and the lattice volume of 

ZnO thin films. The parameter process (pre- and post-annealing) during fabrication of ZnO thin film 

by sol-gel spin coating methods strongly influences the structure of ZnO thin films. 

 

Table 1. Calculated parameters crystal of ZnO thin films with various precursor concentrations after 

annealing at 800C. 

Precursor 

concentration (M) 
h k l TC 

d-spacing 

(Å) 

a 

(Å) 

c 

(Å) 

L 

(Å) 

V 

(Å
3
) 

0.50 (002) 1.00 2.5953 - 5.1907 - - 

0.75 (100) 0.88 2.7901 3.2217 - 

1.9651 46.7237  (002) 1.50 2.5990 - 5.1980 

 (101) 0.62 2.4663 - - 

1.00 (100) 0.85 2.8088 3.2434 - 

1.9745 47.3809  (002) 1.55 2.6004 - 5.2009 

 (101) 0.60 2.4735 - - 

 

Figure 2 shows the full width at half maximum (FWHM), crystalline size, lattice strain and 

dislocation density of (002) peak of ZnO thin film as function of precursor concentration. The FWHM 

increases from 0.14 to 0.26 with increasing the precursor concentration from 0.50 M to 1.00 M. This 

indicates that the crystal quality of ZnO thin film decreases with increasing precursor concentration. A 

smaller FWHM value indicates a better crystallization of the thin films [26]. The result of FWHM 

attributed to decrease in crystalline size. The crystallite size (D) of ZnO thin films was calculated 

using Scherrer’s formula [5, 9]: 
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where  is the FWHM of the ZnO (002) diffraction peak. As shown in Figure 2, the crystalline size of 

ZnO thin films decreases with increasing precursor concentration. This might be due to the presence of 

internal stress and defects in the film. The stress relaxation at the grain boundaries results in the 

smaller crystalline size. This result is in close agreement with the results of SEM characterization 

which will be discussed later. 

The lattice strain () along the c-axis was calculated using the tangent formula [9] 
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   (8) 

It affects the length of dislocation lines per unit volume of the crystal. The dislocation density () due 

to lattice strain can be expressed by the relation below [9]. 
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Figure 2. FWHM, Crystalline size (D), lattice strain () and dislocation density () of ZnO (002) 

as function of precursor concentrations after annealing at 800C. 

 

According to XRD data, the lattice strain and dislocation density value increase as the precursor 

concentration increases from 0.50 M to 1.00 M. The increase in Zn content may lead to the stretch of 

lattice constant during annealing treatment. This can increase the strain, lattice energy and also 

diminish the driving force of the growth, resulting decrease in the particle size and crystallization. The 

results are enhanced by XRD results (Figure 1) and SEM image (Figure 3). Lattice mismatch between 

the substrate and film also contribute in the lattice strain and dislocation densities. 
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Figure 3. Cross-sectional and surface morphology images of ZnO thin films with precursor 

concentration of (a) 0.50M, (b) 0.75M and (c) 1.00 M. 

 

The typical SEM surface and cross-sectional morphology of ZnO thin films deposited on a glass 

with different precursor concentrations are presented in Figure 3. The surface morphology and cross-

sectional of SEM images shows that the grains of ZnO thin films becomes smaller and denser with 

increasing precursor concentrations, as shown on the work by Baneto et al. [21]. The different result is 

shown by Kamaruddin et al. [1], which the grain size of ZnO thin films increases slightly when the 

precursor concentration is increased from 0.3 to 0.6 M. In this work, the decrease in grain size seems 

to be related to a micro-densification effect. The number of nuclei of metal centers increases as an 

effect of increasing precursor concentration [13], which leads to the formation of a denser and 

compact structure of the ZnO thin film on the substrate surface. In addition, as show in Figure 3, an 

increasing precursor concentration causes an increase in the film thickness. The ZnO thin film with 

precursor concentration of 0.50, 0.75 and 1.00 M has an average thickness of around 149.4, 326.0, and 

447.7 nm, respectively. The small crystallites were gathered to form a layer with increasing precursor 

concentration. Another reason, the increasing Zn
2+

 ions concentration as function of precursor 

concentration affects the formation of film thickness. The result of cross-sectional SEM images 

supports the XRD patterns that increasing the intensity of all diffraction peaks are influenced by the 

thickness of film. 

4. Conslusion 

ZnO thin films with various precursor concentrations were successfully deposited on glass substrates 

using sol-gel spin coating methods. All ZnO thin films are polycrystalline in nature with hexagonal 

wurtzite structure and have a preferential orientation along (002) plane. The lattice constant (a and c), 

d-spacing, bond length, volume per unit cell, crystalline size, FWHM, lattice strain and dislocation 

density of ZnO thin films changes are affected by the precursor concentration. An increase in the 

precursor concentration leads to increases in the thickness of ZnO thin film and the grain size of film 

becomes smaller. In summary, the structural and morphological of ZnO thin films strongly depend on 

the precursor concentration. 
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