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Abstract. The aim of the study is to obtain hypersonic waverider aerodynamic characteristics 

over the angle-of-attack range from 0° to 10° at Mach 4. The simplified virtual model of the 

waverider was designed. The Navier-Stokes equations solution was performed using computer 

code into which the method for splitting into physical processes was implemented. The 

unstructured grid was used in the computational process. 

1.  Introduction 

The hypersonic waveriders is a class of vehicles having the following performance advantages: 

 The reusable space vehicles 

 An ability to take off and land horizontally like conventional airplane 

 High aerodynamic efficiency  

The waverider shape is derived from the inviscid conical flow field and the shock wave shape. The 

upper surface is produced by the axisymmetric method of characteristics. The lower surface is 

generated by solutions of the Taylor-Maccoll differential equations [1] given as 
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Here   – ratio of specific heats,   – angle from the conical axis, 
rV  – radial velocity,  

V  – normal velocity. Shock wave shape and streamlines about cone are depicted in Figure 1. 

Waveriders have a performance advantage of maximization lift-to-drag ratio compared with other 

hypersonic vehicles. It is achieved due to a shock wave attached everywhere along the leading edge. A 

second feature of the waverider is that upper surface is oriented, so that it does not disturb the 

overcoming flow. The general waverider disadvantage is that the high lift-to-drag ratio can be realized 

for a specific operation condition with respect to flight altitude, Mach number and shock wave  

shape [2]. 

The viscous effects are not considered in the above mentioned family of vehicles designing. 

However, waveriders have a higher lift-to-drag ratio if viscous effects as well as transition from 
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laminar to turbulent flow are taken into consideration. This class of aircraft is named a viscous-

optimized waveriders [3, 4]. Thus, waverider designing is a complex process including geometric 

modeling using methods of computational fluid dynamics (CFD) and optimization process. 

 

Figure 1. Taylor-Maccoll inviscid cone similarity solution [2]. 

2.  Design of the virtual prototype 

The waverider virtual model used for calculations in this study is shown in  

figure 2. This vehicle is based on viscous-optimized waverider [5] which was designed using 

Maryland Axisymmetric Waverider Program (MAXWARP) [3, 4]. The model background includes 

CFD predictions and experimental data obtained from tests in the Unitary Plan Wind Tunnel (UPWT) 

[6]. The main purpose of this work is to compare current numerical simulation results with mentioned 

data. It was performed with aid UST3D computer code which has already been validated [7, 8]. 

 

 

Figure 2. Waverider model designed for free-stream Mach 

number of 4. 

The elements of the singular cone flow method were used for the mentioned waverider designing. 

The model has a sharp leading edge. The waverider is assumed to have optimal aerodynamic 

performance at the Reynolds number per foot of 2·10
6
. 

3.  Mesh 

The three-dimensional unstructured mesh was generated for the present computational study.  

It consists of 2262354 finite elements and 393370 nodes. A slip boundary condition is imposed  
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by 64094 fictive elements which were generated along the waverider surfaces. The mesh is shown in 

figure 3.  

 

Figure 3. Waverider model mesh. 

The most important unstructured mesh feature is the application of the finite volumes method 

elements [7]. The averaged values of the finite volume derivatives are determined in the framework of 

this approach. The Navier-Stokes equations are approximated by the following relations 
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Here , ,u wv  – components of the velocity vector; p  – pressure; q  – components of the heat flux 

vector;   – components of the viscous stress tensor; 
iV  – i -element volume; 

j

iS  – i -element  

j -face surface area; 
,i jn  – i -element j -face normal component. 

4.  Numerical simulation 

4.1.  Problem formulation 

The three-dimensional Navier-Stokes equations are used for perfect viscous compressible gas flow 

describing and presented in the vector form 

 
( ) ( ) ( ) ( ) ( ) ( )x y z x y z

t x y z x y z

      
     

      

w w w w w w wF F F G G G
 (4) 

  , , , ,
T

u w E    w = v   

  2, , , ,
T

x u u p u uw uE pu      vF   

  2, , , ,
T

y u p w E p      v v v v v vF   

  2, , , ,
T

z w uw w w p wE pw      vF   

3

APhM2016                                                                                                                                           IOP Publishing
IOP Conf. Series: Journal of Physics: Conf. Series 815 (2017) 012022         doi:10.1088/1742-6596/815/1/012022



 

 

 

 

 

 

  0, , , ,
T

x

xx yx zx xx yx zx xu w q        vG   

  0, , , ,
T

y

xy yy zy xy yy zy yu w q        vG   

  0, , , ,
T

z

xz yz zz xz yz zz zu w q        vG   

In the above equations w  – conservative variables vector; x
F , y

F , z
F  – projections of the 

convective flow vector; x
G , y

G , z
G  – projections of the viscous flow vector,   – density,  

E – specific total energy. The components of the viscous stress tensor are given as 
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Here   – dynamic viscosity. In addition to the Navier-Stokes equations the perfect gas state 

equation is considered 

      2 2 21 1 0.5p U E u w           
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Here U  – specific internal gas energy. The thermophysical parameters temperature dependence is 

not taken into account.  

The solution method basis is the original unsteady Navier-Stokes system splitting into physical 

processes [8]. Each of the time steps calculation fall into three stages. First, the flow parameters 

reference values are determined without convective effects. The Euler equations are the result of the 

initial system simplification. Second, mass flows over the cell boundaries are considered. Accordingly, 

the effects of transition are calculated. And, finally, flow parameters are determined by laws of 

conservation. The mass, momentum and energy redistribution are accomplished at this stage. 

4.2.  Boundary conditions 

The four types of the boundary conditions were used for the numerical simulation. The free-stream 

boundary conditions are imposed on the front boundary and are described as 

 
enter    

 
enteru u   

 
enter v v  (7) 
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Here p , 
, u

,
v , w

, E
 – free-stream flow parameters (pressure, density, velocity vector 

components, specific total energy). 

The open boundary conditions were implemented for the gas outflow from computational domain: 
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Here n  – specific normal vector. 

The impermeability boundary conditions were applied in the Euler equations solution process on 

the solid wall. The normal velocity is equal to zero. The tangent velocity behavior is characterized as 

continuous. It is described by no-slip boundary conditions: 

 0
wall
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

n
 (9) 

 0n n n

wall wall wall
u w  v   

The insulated wall boundary condition was realized for the energy equation: 

 0
wall
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

n
 (10) 

The Navier-Stokes equations describe viscous gas model on the wall by a slip boundary conditions. 

The insulated wall boundary condition was used for the energy equation: 
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The fixed temperature is supported on the body surface: 
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The symmetry boundary conditions are realized in the symmetry plane. It is the same as the 

inviscid boundary conditions on the insulated wall: 
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5.  Results 

The numerical simulation results are presented in figures 5 – 8. The comparison between CFD 

predictions, experimental data and computational study results was performed at Mach 4 and various 

angles of attack assuming that base pressure equal to free-stream pressure. The obtained aerodynamic 

characteristics have the similar type of behavior as experimental data. The lift and drag coefficients 

increase as angle of attack increases. The reasonable accordance between experimental data and 

solutions was obtained for the angle-of-attack range from 0° to 4°. The calculation error increases at 

angles of attack above 4°. 

  

Figure 5. Lift coefficient values for different 

angles of attack at Mach 4. 

Figure 6. Drag coefficient values for different 

angles of attack at Mach 4. 

  

Figure 7. Lift-to-drag ratio values for different 

angles of attack at Mach 4. 

Figure 8. Lift-to-drag ratio as lift coefficient 

function at Mach 4. 

The maximum lift-to-drag ratio occurs at 1° angle of attack. This parameter decreases as angle of 

attack increase. The aerodynamic performance degrades significantly at high angles of attack due to 

the drag coefficient increasing faster than lift coefficient growth. The acceptable agreement between 

the experimental values and UST3D code solutions occurs at high angles of attack. 

6.  Conclusions 

The results obtained with the aid of the UST3D code showed that the aerodynamic parameters can be 

obtained with reasonable accuracy. It should be noted that the geometric model reproduction precision 

effects the numerical simulation success significantly. The difference in the definition of the reference 

area is another factor resulting in the error. 
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