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Abstract. For the analysis of the frequencies and shapes of the natural oscillations of a gas in 
an elongated rectilinear combustion chamber, this chamber can be treated as a kind of an organ 
pipe that has the following specific features: 

1. the chamber has an inlet and outlet nozzles; 
2. a gas mixture burns in the combustion chamber; 
3. the combustion materials flow out from the outlet nozzle; 
4. the gas flows in such a way that its velocity in the larger part (closer to the outlet 

nozzle) of the chamber exceeds the speed of sound (Mach number 1M ). There are 
only separate domains (one or several), where 1M . 

The excitation of the natural oscillations of the gas and an increase in the amplitude of such 
oscillations can lead to instability of the combustion process [1]. 

1.  A simplified model of the natural oscillations of the gas in an elongated chamber 
Let the transverse dimensions of the chamber be substantially smaller than its longitudinal dimension. 
We assume that the chamber is of constant cross section, the length of the chamber is l , and both its 
ends are open. The gas flows into the chamber at constant velocity U  and flows out of it with the 
same velocity U  (figure 1). It is required to find the frequencies and shapes of the natural oscillations 
of the gas. Using the linearized equations of acoustics for a moving medium [2], we obtain the 
equations for the sound potential 
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and the boundary conditions 
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Boundary conditions (2) provide zero values for the sound pressure at the left-hand and right-hand 
boundary points. The variable component of the velocity and the sound pressure are expressed in 
terms of the potential   as follows: 
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where   is the average gas density. 
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We will seek the solution of the boundary-value problem (1), (2) in the following form ( 2 2c U , c  
is the speed of sound in the immobile medium) 

  ˆ   i tx e   (4) 

 
Figure 1. Geometry of the problem. 

The conventional calculations yield 
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where n  is the number of the oscillation mode, v  is the velocity of the gas in the pipe, and /M U c  
is the Mach number. From the second relation of (3) it follows that the functions n  characterize the 
natural modes of the acoustic pressure. 

 
Comments to the relations (5): 
The natural oscillation frequencies and shapes can exist only when 1M . For 1M , all natural 

oscillation shapes n  are complex-valued. Only for 0M , when the steady-state flow is absent, the 
natural shapes become real. The real natural shapes can be represented as a superposition of the 
complex-valued natural shapes. This implies that the sound pressure distribution in the case of 
acoustic oscillations substantially differs from the sound pressure distribution for the case when the 
flow is absent. 

Table 1. Sound velocity in the methane – air mixture. 

1
3

  397.2 /m s  

1
2

  380.8 /m s  

1
5

  410.3 /m s  

4
5

  351.2 /m s  

 
Furthermore, the steady-state flow always leads to a decrease in the natural frequencies. 
From the above presented considerations it follows that the speed of sound c  is a rather important 

parameter. If the chamber is filled with a gas at a given temperature T , the speed of sound can be 
defined rather accurately by  

U U

l

2

APhM2016                                                                                                                                           IOP Publishing
IOP Conf. Series: Journal of Physics: Conf. Series 815 (2017) 012021         doi:10.1088/1742-6596/815/1/012021



 0
0


Tc c
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 (6) 

where 0 273T K , T  is the temperature of the gas in kelvins, and 0c  is the speed of sound for 0T T . 
Let the chamber be filled with a mixture of two gases and let   and 1  be the mass fractions of 

the respective components in the mixture. Then, if the speed of sound is known for each of the 
components, the speed of sound for the mixture can be defined by one of the following expressions 
[3]: 

   1 21  c c c  ,  2 2 2
1 21  c c c    (7) 

where c  is the speed of sound for the mixture, 1c  is the speed of sound for the first component, 2c  is 
the speed of sound for the second component, and   is the mass fraction of the second component. 

As an example, we present the data for the methane-air mixture: 273T K , 1 430 /c m s  
(methane), 2 331.5 /c m s  (air) (table. 1). 

2.  The dependence of the natural frequencies on the change in the speed of sound along the 
combustion chamber 
Let 0c  be the speed of sound in the gas mixture at the inlet of the combustion chamber. Due to a 
number of causes, the speed of sound will change as the distance from the inlet increases. For 
example, the mix proportion changes, the combustion materials are formed, and the temperature 
changes. Abstracting from the causes of the change in the speed of sound, we assume that this speed is 
a known function of the coordinate x  measured along the combustion chamber from the inlet nozzle 
to the outlet nozzle:  

   0 1 c c F z  (8) 

where 0c  is the speed of sound at the chamber inlet and /z x l  is the dimensionless length. 
In addition we assume the inequality 1M  for the Mach number. The determination of the 

natural frequencies and shapes of the oscillations of the gas is reduced to the Sturm-Liouville 
boundary-value problem 

 
 

0
1

   
 F z
 ;    0 1 0     (9) 

The natural frequencies   are related to the eigenvalues   by 0 / c l  , / 2f    (Hz). As 
an example, we consider the following functions  f z  that characterize the sound speed distributions: 
1)   / 4F z z ; 2)   58  zF z ze . The results of calculations of natural frequencies for different types 
of sound speed distribution  F z  are presented in the table 2. 

Using the accelerated convergence method [4], we find the eigenvalues n  and, thereby, the natural 
frequencies for three cases:   0); 1); 2)F z . The calculations for the natural oscillation modes show 
that the shapes of these oscillations for the sound speed distributions (8) under consideration are close 
to a sinusoidal form, i.e., they are close to the unperturbed oscillation modes. Using the accelerated 
convergence method [4], we calculated the natural frequencies up to the sixth digit after the point and 
then rounded the result. In a similar way, the calculations can be performed for any functions  F z .  
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Table 2. The dependence of natural oscillation frequencies nf  from the form of sound speed 
distribution 

n    0, nF z f    0.25 , nF z z f     8 exp 5 ,  nF z z z f  

1 00.5 c
l

 00.5298 c
l

 00.5739 c
l

 

2 01.0 c
l

 01.0591 c
l

 01.1490 c
l

 

3 01.5 c
l

 01.5886 c
l

 01.7155 c
l

 

4 02.0 c
l

 02.1181 c
l

 02.2811 c
l

 

5 02.5 c
l

 02.6486 c
l

 02.8470 c
l

 

 
If the Mach number is known as a function of the coordinate x , the natural oscillation frequencies 

and modes can be determined by using the accelerated convergence method. However, this method 
needs a modification, since the equation contains a term with the complex unit. We suggest a 
simplified expression for the natural frequencies nf , similar to (5), in accordance with [1]: 

  2ˆ1
2

 n
nf c M
l

, (10) 

where c  is the mean value of the speed of sound, and M̂  is the generalized Mach number ˆ /M U c ; 
the averaging is performed along the chamber length. The conditions for which expression (10) 
provides an acceptable accuracy can be obtained by means of the accelerated convergence method. 

3.  Calculations of the acoustic oscillations of the gas in the combustion chamber with taking into 
account the design features 
A simplified scheme for the combustion chamber that is used in engineering applications is shown in 
figure 2. The chamber has a length of 1 m. The inlet nozzle has a square cross section of the area 

2
0 400S cm . The outlet nozzle has a rectangular cross section of the area 2

1 800S cm . Near the 
middle of the chamber, there is an elevation of the top surface located between the points 1 0.48x m  
and 2 0.58x m . If the length of the chamber is taken as the unit of length, the cross-sectional area can 
be approximated as follows: 

     3 4
0 1 2

1 2

1 1 th th
      

               

x a a xS x S a x a
b b

 (11) 

By varying the parameters ia  and ib , a rather wide class of design features of the chamber can be 
covered. 

At the first stage, we assume that gas flow is absent from the chamber. It is required to determine 
the natural oscillation frequencies and shapes for a chamber open at both ends. We arrive at the Sturm-
Liouville problem 

 
   

   

0

0 1 0

    
 
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d duS x S x u
dx dx


 (12) 
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Figure 2. Scheme of the combustion chamber used in technical applications. 

After finding the eigenvalues n  and the respective eigenfunctions n , we determine the natural 
frequencies in the dimensional units: 

 
2

n n
cf

l



 

Table 3. Natural oscillation frequencies nf , Hz, for the 
chamber without an elevation. 1 1.875a  , 2 0a  . 

1

2

3

4

5

0.49339

0.99633

1.49748

1.99809

2.49847










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l
cf
l
cf
l
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l
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1

2

3

4

5

0.5

1.0

1.5

2.0

2.5











cf
l
cf
l
cf
l
cf
l
cf
l

 

 
Table 4. Natural oscillation frequencies nf , Hz, for the chamber with an 
elevation 1 2 3 4 1 21.875; 0.2; 0.48; 0.58; 0.001; 0.02     a a a a b b  

1

2

3

4

5

0.47608 2%

1.02134 2%

1.46111 2.7%

2.02913 1.6%

2.47321 1%

 

 

 

 

 

cf Hz
l
cf Hz
l
cf Hz
l
cf Hz
l
cf Hz
l

 

Using the accelerated convergence method [4], we found the solutions of the boundary-value 
problem (12). The computational results are presented in tables 3,4. 

2
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The right-hand column presents the natural frequencies for the uniform chamber, 1 0a . For the 
first natural frequency, 1f , the difference as compared to the nonuniform chamber makes up 1.3%; for 
all other frequencies, this difference is less than 1%. The perturbed frequencies virtually coincide with 

the relevant values ,
2

n
nf c Hz
l

 for the natural frequencies of the straight pipe,   0 const S x S . 

Table 4 presents the first five natural frequencies for the chamber that has an elevation, as well as 
the differences of these frequencies from the respective values obtained for the chamber without an 
elevation. The elevation located as indicated above leads to a decrease in the odd natural frequencies 
and an increase in the even frequencies. 

For comparison, consider the case where there is a cavity on the top wall of the chamber. The 
results for this case are presented in table 5. 

The cavity on the top wall leads to an increase in the odd natural frequencies and a decrease in the 
even frequencies. The plots of the shapes of the natural oscillations for all cases considered show that 
these shapes virtually coincide with sinusoids sin nx

l
  for the uniform chamber,   0S x S , whereas the 

derivatives of the velocity have essential features near the elevations or cavities, as was mentioned 
previously [4]. 

 
Table 5. Natural oscillation frequencies nf  for the chamber with a 
cavity 1 2 3 4 1 21.875; 0.2; 0.48; 0.58; 0.001; 0.02      a a a a b b  

1

2

3

4

5

0.51142 : 3.7%

0.94839 4.9%

1.53991 2.2%

1.94530 2.7%

2.54078 1.7%

  

 

 

 

 

cf
l
cf
l

cf
l
cf
l
cf
l



 

 
For subsonic flows in the chamber, 1M , the natural frequencies for both cases can be calculated 

according to (5). 

4.  Chamber through which a supersonic flow is blown 
Numerical computations show that for the chamber with positive defect (an elevation on the top wall) 
a supersonic flow ( 1M , air blowing) is observed virtually everywhere. However, 1M  in the 
neighborhood of the defect for 0.48 .58 x . In this domain, standing acoustic waves (natural 
oscillations) may exist. This neighborhood is sketched in figures 3,4.  

 
Table 6. Natural oscillation frequencies nf  for region with defect 

   2 1
4 634 1 0.25 n

n lf  
0n  1 1427f Hz  
1n  2 4461f Hz  
2n  3 7435f Hz  
3n  4 10409f Hz  
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While the left-hand boundary is fixed fairly accurately, the right-hand boundary does not coincide 
with the critical point at which 1M . For this reason, we take the point 0 0.56 x x  as the left-hand 
boundary.  

 

 

 
 

The boundary conditions should be taken as follows: 
 at the left-hand point of the elevation, the speed of sound is equal to zero; 
 at the right-hand point, the pressure is equal to zero. 
Then we arrive at the following boundary-value problem for the sound pressure: 

 
2

2 0 
d u u
dz

 , 
0

0



z

du
dz

, 
0

0



z z

u  

  1 2cos 2 1    lu C n z ,   2

2 2 1    n l n  

  2 2 1
2 4

  n
n

cf c n
l




; 0.08l m  

0.5

M

0

1.0

1.5

2.0

2.5

0.4 0.5 0.6,X m

1

2

3

Figure 4. The dependence of the Mach 
number of the longitudinal coordinate of 

the Top (1), middle (2) and  lower (3) 
layers of the chamber in the defect area. 

0.1m

Figure 3. Region of the chamber, satisfying 
the condition of existence of standing waves. 
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The mean speed of sound in this region is defined by 1000
273331.5 634.5 /  c m s , and the average 

Mach number is 0.5M . Hence, in accordance with (6), we have results presented in table 6. 
The standing waves in the domain where 1M  can be excited due to the vortex shedding or due to 

a thermomechanical interaction, as it is the case for a heated Helmholtz resonator [5]. If there are 
several regions in which 1M , several types of standing acoustic waves may occur in each of these 
regions. 

References 
[1] D T Harrje and F H Reardon (eds) 1972 Liquid Propellant Rocket Combustion Instability 

(Washington: NASA) p 637.  
[2] Blokhintsev D I 1981 Acoustics of a Nonhomogeneous Moving Medium (Moscow: Fizmatlit) 

p 206 (in Russian) 
[3] Kudryavtsev B B 1956 Akusticheskij Zhurnal. 2 167 (in Russian) 
[4] Akulenko L D and Nesterov S V 2005 High-Precision Methods in Eigenvalue Problems and 

Their Applications  (Boca Raton: Chapman and Hall/CRC Press) p 255 
[5] Akulenko L D and Nesterov S V 2004 Fluid Dynamics. 39 358 
[6] Akulenko L D, Baidulov V G and Nesterov S V 2006 J. Appl. Math. Mech. (PMM). 70 504 
 

8

APhM2016                                                                                                                                           IOP Publishing
IOP Conf. Series: Journal of Physics: Conf. Series 815 (2017) 012021         doi:10.1088/1742-6596/815/1/012021


