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Abstract. In the paper two-dimensional and quasi-one dimensional models for scramjet 

combustion chamber are described. Comparison of the results of calculations for the two-

dimensional and quasi-one dimensional code by the example of VAG experiment are 

presented. 

1.  Introduction 

Recently, a study of combustion processes in the ramjet and scramjet is becoming more and more 

important in connection with attempts to create a hypersonic aircraft. Carrying out physical 

experiments in this field is connected with a lot of technical difficulties and is too expensive. Special 

requirements have to meet the fuel and combustion chamber geometry. Therefore, computational and 

theoretical studies of combustion processes in scramjet begin to play an increasing role. At the first 

stage of designing the scramjet it is very important to make an accurate prediction of the engine 

efficiency. In recent years, the quasi-one-dimensional scramjet model is widespread [1–14]. In these 

models to calculate the chemical concentrations, temperature and pressure fields, the set of ordinary 

differential equations should be solved, and the area of the combustion chamber is defined as a 

function of a longitudinal coordinate. However, the quasi-one-dimensional model does not allow to 

describe a structure of flow fields. There are two-dimensional [15] and three-dimensional [16] models 

for describing the structure of flows in scramjet chamber.  

In [17] the comparison of the results of calculations for the two-dimensional and quasi-one 

dimensional code has been presented for HyShot-2 experiment. The purpose of this paper is to 

compares the quasi-one-dimensional and two-dimensional models by the example of numerical 

simulation of VAG experiment [18]. 

2.  Description of VAG experimental setup  

The VAG [18] experiment is similar to T4 at the University of Queensland.[19,20]. In [19] the 

comparison of data between this two experiments was carried out. The experiment was conducted for 

a rectangular channel expanding part, as shown in figure 1. The width of the camera was constant and 

equaled to 94.3 mm. Fuel injection is executed from the gap strut in the center of the chamber. On the 

top and bottom of the strut there were located 4 holes with a diameter of 2.5 mm, through which 
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hydrogen is carried out perpendicular to the flow. At the end of the strut there were located 4 holes 

with a diameter of 2.5 mm, through of hydrogen injected the parallel to the flow. The experiment 

studied the effect of the strut geometry on the results obtained. The length of the wedge spacers (33.5 

mm, 37.6 mm, 39.6 mm, 43.8 mm and 44.8 mm) was varied. In the experiment the pressure 

distribution on the chamber wall was measured. In this paper only normal hydrogen injection and 

equivalence ratio φ=0.61 was considered. The following incoming air flow parameters were used for 

verification: 

Incoming flow pressure:                     P = 0.58
 

atm; 

Incoming flow temperature:               Т = 1258 К; 

Incoming flow Much Number:          М = 2.44; 

Incoming flow gas mixture:               Air;  

Fuel Much Number:                           М = 1. 

 

 

Figure 1. Scheme of the VAG[18] supersonic combustion experiment. 

3.  Quasi-one-dimensional computational fluid dynamic model  

In [17] the quasi-one-dimensional computational fluid dynamic model described in detail.To describe 

the fluid flow in scramjet the conservation laws for mass, momentum and energy should be specified. 

The governing equations are based on the following assumptions:1) ideal gas law is fulfilled in the 

combustor, 2) quasi-one-dimensional flow (all flow variables are functions of the axial distance along 

the combustor),3) continuous flow (changes in stream properties are continuous functions), 4) steady-

state flow. Quasi-one-dimensional approach requires that we state these equations into the set of 

ordinary differential equations (ODE). The equations solved are: 
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We use the supersonic mixing model [2]. Hydrogen was considered as a fuel. Global kinetic 

mechanism suggested by Westbrook [21] was used. The set of ODE was solved numerically using the 

Runge-Kutta method and generalized Newton method [22]. 

4.  Two-dimensional computational fluid dynamic model  

For two-dimensional calculations we used the NERAT-2D computer code [15]. NERAT-2D realizes 

the time-relaxation method. At each time step the following groups of governing equations were 

integrated successively: the Navier  Stokes and continuity equations, the equations of mass 

conservation of chemical species, the equation of energy conservation. These equations are formulated 

in the following form: 
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function; ; ,   are the viscosity and heat conductivity coefficients, pc  is the specific heat capacity of 

gas mixture; ,
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iY  is the mass fraction of species i; , ,p i ic h  are the specific heat capacity at 

constant pressure and specific enthalpy of species i; 
iw  is the reaction rate for species i; 

iD  is the 

effective diffusion coefficient of species i; ,i i J  are the density and mass diffusion flux for species i; 

gradi i iD Y J ; 
sN  is the number of species. We used the kinetic mechanism proposed by Evans 

and Schexnayder [23]. 

5.  Results 

Comparison of the pressure distribution calculated by two-dimensional model (blue line) and quasi-

one-dimensional model (red line) with experimental data (green triangles) are shown in figure 2. It 

should be noted that the pressure increase appears to be a more significant under two-dimensional 

modeling. This can be explained by the fact that the flow in the channel is actually three-dimensional, 

and therefore it is necessary and very important to consider the fuel injection features for a correct 

description of the flow and combustion in the channel. One can also see a good agreement between the 

quasi one-dimensional simulation results and experimental data. 

Pressure, Pa 

 
    Coordinate, cm 

Figure 2. Comparison the pressure distribution calculated by two-dimensional model (blue line) and 

quasi-one-dimensional model (red line) with experimental data (green triangles). 

X, cm

P
re

s
s

u
re

,
P

a

0 10 20 30 40 50 60 70 80
20000

40000

60000

80000

100000

120000

140000

160000

180000

Q1D

Exp

2D

4

APhM2016                                                                                                                                           IOP Publishing
IOP Conf. Series: Journal of Physics: Conf. Series 815 (2017) 012007         doi:10.1088/1742-6596/815/1/012007



 

 

 

 

 

 

6.  Conclusion 

Comparison of the pressure distribution calculated by two-dimensional model and quasi-one-

dimensional model with experimental data for VAG experimental setup is presented. This 

work presents a continuation of our efforts on the verification and validation of numerical methods 

and computational codes for calculation of various hypersonic vehicles and energetic devices [22-31]. 
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