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Abstract. The randomized Kaczmarz(RK) is a useful algorithm for solving consistent linear 

system )A(A nm   
bbx ， . It was proved that for inconsistent linear system, with 

randomized orthogonal projection, the randomized extended Kaczmarz(REK) method 

converges with an expected exponential rate. We describe an accelerated randomized extended 

Kaczmarz algorithm(AREK) with Nesterov’s accelerated procedure. The analysis shows that 

AREK converges better than REK when A is dense and the smallest singular value of AAT  is 

small. 

1. Introduction 

The Kaczmarz method[1] is a popular algorithm for solving overdetermined linear systems and has 

numerous applications from tomography to image processing[2, 3]. This method sweeps through the 

rows of A in a cyclic manner, projecting in each substep the last iterate orthogonally onto the solution 

hyperplane of ii , bxa  ; then the  th1k   estimate 1kx  is defined by 
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where i = k mod m + 1, ia  is the thi  row of A. 

T. Strohmer and R. Vershynin [4, 5] propose at each iteration to randomly select a row of A with 

probability proportional to Euclidean norm of the row. This method is the randomized Kaczmarz(RK) 

which can thus be described by 
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where  ip   takes values in {1,...,m} with probabilities 
2

F

2

2p(i) A/a . This randomized version of the 

Kaczmarz method provides clear advantages over the standard method in many cases. And in [5], 

using the selection above,they were able to provide a proof for the expected rate of convergence,  
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where 0x  denotes the initial approximation, assuming that bx A  has a solution and denote  x
*
:= A

†
b, 

2

F

2

2

1 AAR  , 
2

1A  is the smallest constant M such that the inequality 
22 M

1
A xx   holds for 

all vectors x. The RK method addresses the significant disadvantage of the original Kaczmarz 

algorithm. It is easy to analyze the convergence rate for the RK method, while the original algorithm 

converge very slow when the data order is poor. 

In 2010, D. Needell [6] analyzed the case where the system bx A  is corrupted by noise, and 

considered the system rbx A  where r is an arbitrary error vector. In the noisy version, she 

obtained the RK method reaches an error threshold dependent on the matrix A with the same rate as in 

the error-free case,  

γR
R

1
1

2

*
0

2

k

2

**
k 








 xxxx ,                                           (4) 

where 
2iii /rmaxγ a , *

kx  denote the thk  iterate of noisy randomized Kacmarz. Later, in[7], D. 

Needell and Y. C. Eldar utilized the Johnson-Lindenstrauss[7] dimension reduction technique to keep 

the runtime on the same order as the original RK version and proposed randomized Kaczmarz via 

Johnson-Lindenstrauss(RKJL) and improved the convergence rate of the RK method. 

In [8], A. Zouzias and N. M. Freris presented the randomized extended Kaczmarz for solving 

inconsistent linear system rbx A . By a randomized approximation orthogonal projection, they 

approximately computed linear equation of R(A)A bx  , where  n|A:)A(  xx . Essentially, the 

RK algorithm is applied twice. The convergence rate of this method is  
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Let )(21 ... Arank   be the non-zero singular values of A, where 2
1R  denotes 2

)(
1
1 / Arank . This 

method can be considered as a randomized variant of the extended Kaczmarz method proposed by 

C.Popa [9].  

In [10], J. Liu and S. J. Wright proposed an accelerated randomized(ARK) algorithm with better 

convergence than the standard RK method on ill conditioned problems. The ARK method starts at a 

significant disadvantage in the sparse setting, so by Nesterov’s accelerated procedure [11], they 

improved the iteration of the standard RK method and proved, if matrix A is dense and the minimum 

singular value of AAT  is small,  
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where 
2

A)T(A

*
0 
 xx  is ))(A)(A)trace(( *

0
TT*

0 xxxx   , )( AAT  is the Moore-Penrose 

pseudoinverse of AAT . Motivated by the idea of Nesterov’s acceleration, unlike the asynchronous 

parallel randomized Kaczmarz algorithm, we apply Nesterov’s accelerated procedure in the REK 

method if A is dense and the minimum singular value of AAT  is small, and propose an accelerated 

randomized extended Kaczmarz algorithm(AREK). In this paper, under the condition that A is dense 

and the minimum singular value of AAT  is small, we prove that the convergence rate of the AREK 

method is better than the REK method, and illustrate the computational results of our approach. 

2. Algorithm 

Both theoretical and numerical researches have shown that the RK algorithm provides very promising 

results. Here we mainly show an accelerated REK method works well in the case where the system is 

corrupted with noise. In this section we consider the consistent system bx A  after an error r is added 

to the right side, rbx A  In (4) with )A(br   tells us that the randomized Kaczmarz algorithm 
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performs well for least square problems whose least squares error is very close to zero, 0|||| 2r . First 

we give the notations and preliminaries. 

2.1 Notations and preliminaries  

We denote the rows and columns of A by m1,...aa  and 
n1,..., aa . For an integer m, let },...,2,1{:][ mm  . 

Let )(21 ... Arank   be the non-zero singular values of A, min1    and max)(  Arank . 

  }|A{:A n xx  and )(A denotes the orthogonal complement of )(A . Assume that bx A

has a solution and denote x
∗
 := A

†
b, and the fist estimate 00 x . Given any mb , we can write it as 

 (A)(A)  bb , where )A(b  is the projection of b onto )A( . F||A||  is the Frobenius norm of A. 

Given a positive semidefinite matrix M, 
M

X is defined as )( MXXtrace T . 22

2

1-A
F

AR  , 
2

1A  is the 

smallest constant M such that the inequality 
22

)1/M(A xx   holds for all vectors x . We assume 

throughout that the rows of A are normalized, 1
2i a , mi ,...,2,1 . 

2.2 Randomized extended Kaczmarz(REK) 

Table 1. Randomized extended Kaczmarz(REK) (Algorithm 1) 

Require: nm  matrix A, coefficient vector mb   

Initialization:  00 x  and bz 0 .  

Select: 
Pick ][mki  , ][nkj  with probability [m]i,

A
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2

F
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Update: Set k = k + 1  

end  

 

A. Zouzias and N. M. Freris proposed the variant of the RK method for solving inconsistent linear 

system, see [8] for more details. 

This approach can efficiently reduce the norm of the noisy part of b, then apply the RK algorithm on a 

new linear system whose right hand side vector is now arbitrarily close to the column space of A, 

)A(A bx  . Algorithm 1, see Table 1, showed that the RK method is applied twice by the REK 

method, and The convergence rate of it has been proven, it is showed in (5). Actually, A. Zouzias and 

N. M. Freris did not give the best result of the convergence rate of the REK method. By the method of 

their proof, it is easy to obtain the convergence rate of the REK algorithm, 

 

Theorem 1. After 1k  iterations, let *
kx  be the thk  iterate of the noisy REK method, then, 
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where 
22

2

1

F
AAR  , and the expectation is taken over the choice of the rows in the algorithm. 
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We now describe the complexity of the REK method for the case of dense A. In Section 2, We assume 

throughout that the rows of A are normalized, m1,2,...,i1,
2i a . Then the computation of 

Algorithm 1 requires about 4(m + n) operations per iteration. 

2.3 Nesterov’s Accelerated Randomized Kaczmarz(ARK) 

Table 2. Accelerated Randomized Kaczmarz(ARK) (Algorithm 2) 

Require: nm  matrix A, coefficient vector mb   

Initialization:  000  xv . Choose K  to be the larger root as in (8). Set k  and k  as in (9). 

Select: 
Pick ][mik   with probability [m]i,

||A||
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Update:  Set k = k + 1  

end  

The ARK algorithm, see Table 2, applies Nesterov’s accelerated procedure [11] to improve the 

standard RK method. If we apply bx A  to 
2

Amin bxx  , gradient descent sets 

 kkk1k θ xfxx  , where  kxf  is the objective gradient and k  is the stepsize. Nesterov’s 

accelerated procedure introduces two sequences  ky  and  kv  and obtain the following iterative 

scheme:      kkkkkk1kkkk1kkkkkk 1;;)1( yfyvvyfyxxvy    . With 

appropriate choice of k , k  and k , this method yields better convergence rate than the standard 

gradient descent. And in [12], Y. Nesterov obtained the way of choosing the parameter k , k  and 

k , we set 01-  , choose k  to be the larger root of 

2
1

2 )1(  k
kk

k
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 ,                                                          (8) 

Then we set k  and k  as follows: 
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In [10], J. Liu and S. J. Wright showed the ARK method to address the consistent linear system.Since 

the main computation of REK is about 4m+4n operations per iteration then the cost per iteration of 

Algorithm 2 is about 11n with the same assumption as the REK method, incurred in steps of 

Nesterov’s accelerated procedure. 

Remark 1. If the data matrix A is sparse, with a fraction of   nonzeros(with 10  ), the ARK 

method has s  significant disadvantage. The average number of operations for each iteration of the RK 

method is )( nO  , however, since the vectors kx , ky  and kv  are dense in general, the operation of the 

ARK algorithm remains at )(nO . Therefore, in this paper, we assume that the data matrix A is dense. 

2.4 Nesterov’s Accelerated Randomized extended Kaczmarz(AREK) 
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We present Nesterov’s accelerated randomized extended Kaczmarz algorithm which is a specific 

combination of the REK algorithm together with the ARK algorithm. The proposed algorithm consists 

of two components. The first component is the randomized approximate orthogonal projection which 

implicitly maintains an approximation to )A(b  formed by kzb . The second part applies the ARK 

method, with Nesterov’s accelerated procedure, on the system kzbAx  . 

Table 3. Nesterov’s Accelerated Randomized extended Kaczmarz(AREK) (Algorithm 3) 

Require: nm  matrix A, coefficient vector mb    

Initialization:  .0,,0 1000  bzxv  

Select 1: 

Pick ][njk   with probability [n]j,
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Update:  Set k = k + 1  

end  

The main computation of Algorithm, see Table 3, consists two parts, the first is 4m which is the cost 

of randomized approximate orthogonal projection, the second component is 11n of that of the ARK 

method. Next, we consider the expected rate of convergence AREK.  

Theorem 2. If data matrix A is dense and  0)(min AAT , after 1k  iterations, AREK with input 

A and b  computes x  vector *
x  such that 
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Before proving Theorem 2, it is first really important to analyze that, when the error vector is added, 

what will happen to the solution space of the original equations. Next lemma will show that each 

hyperplane, which is  iii ,:H bxax   is shifted, and the distance of each hyperplane.  
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Lemma 1. [6]  iii bxaxH  ,:  is the affine subspace of the 
n  which consist the solution of 

the unperturbed equations,  is the solution space of the noisy equations. Then  iii
*
i H:H   a  

where 
2

2i

i
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a
 . 

Then we will utilize the convergence rate of the part of the randomized approximate orthogonal 

projection to obtain convergence rate of our approach.  

Lemma 2. [8] Let 
mnm

b    ,A  be the variable of linear system bx A , after 0k  

iterations of Algorithm 3 it holds that  
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Proof of Theorem 2. We denote 
*

kx  be the 
thk  iterate of the noisy AREK method, and kx  is the 

thk  iterate of the noiseless AREK method. Then  we have  
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1ky  denote the 
thk )1(   iterate of the noisy AREK method. We us the notation as in Lemma 1, 
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thk  iteration. Again by orthogonality, we have  
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After k iterations, we obtain )A(k bzb  , then we have 
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bzr . By Lemma 2, 
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)A( xxb  , we obtain (10). 

If data matrix A is dense and  0)(min AAT , by comparing the conclusion of Theorem 1 and 

Theorem 2, we conclude that our approach is faster than the REK method. 

3. Numerical results 

In the section, we describe some numerical results for the REK algorithm and the AREK algorithm. 

We compare REK and AREK for dense A and  0)(min AAT . Synthetic data for our numerical 
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computation is generated as follows: optimal solution n* x  is chosen to be i.i.d. )1,0(N . Each row 

of A are normalized. We set the right-hand side rxb  *A , and we set r i.i.d. )1,0()100/1( N and the 

data matrix nmA  i.i.d. )1,0()10/1( N . We measure performance by plotting residual 
2

*
0 xx 

against the number of iterations, and the initial point 00 x  is used in all numerical computation. 

Figure 1 show residual errors for REK and AREK with different )(min AAT  and n. 

4.  Conclusion 

This paper proposes an accelerated randomized extended Kaczmarz(AREK) algorithm via Nesterov’s 

accelerated procedure, and we obtain better convergence rate. Both REK and AREK have almost the 

same complexities per iteration for the dense data. In the section of numerical results, under the 

assumption of dense data matrix A and  0)(min AAT , a comparison of convergence rate of REK 

and AREK is provided. 
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(a)                                                                      (b) 

 
(c)                                                                      (d) 

Figure 1. y-axis denotes 
2

*

010log xx  , x-axis denotes the number of iterations. 

Blue line is REK, red line is AREK. (a):m=100, n=90,  )(min AAT = 0.0018. 

(b):m=100, n=80,  )(min AAT = 0.0143. (c):m=100, n=70,  )(min AAT = 0.0267. 

(d):m=100, n=60,  )(min AAT = 0.0644. 
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