
Transposition of Francis turbine cavitation

compliance at partial load to different operating

conditions

J. Gomes1, A. Favrel1, C. Landry2, C. Nicolet2, F. Avellan1

1EPFL Laboratory for Hydraulic Machines, Avenue de Cour 33bis, 1007 Lausanne,Switzerland
2Power Vision Engineering Sarl, Ecublens, Switzerland

E-mail: joao.gomes@epfl.ch

Abstract. Francis turbines operating in part load conditions experience a swirling flow at the
runner outlet leading to the development of a precessing cavitation vortex rope in the draft
tube. This cavitation vortex rope changes drastically the velocity of pressure waves traveling
in the draft tube and may lead to resonance conditions in the hydraulic circuit. The wave
speed being strongly related to the cavitation compliance, this research work presents a simple
model to explain how it is affected by variations of operating conditions and proposes a method
to transpose its values. Even though the focus of this paper is on transpositions within the
same turbine scale, the methodology is also expected to be tested for the model to prototype
transposition in the future. Comparisons between measurements and calculations are in good
agreement.

1. Introduction
Hydropower plants are often required to operate in off-design conditions in order to compensate
for variations in power consumption and generation. While operating at part load or full load,
Francis turbines present a swirling flow in the draft tube that can result in the development of
a cavitation vortex. The presence of cavitation changes the propagation characteristic of the
pressure wave through the draft tube, drastically reducing the wave speed and therefore the
system eigenfrequencies.

As reported by Landry et al. [1], a series of measurements were performed in a reduced
scale model of a Francis turbine of specific speed ν = 0.27. These measurements highlighted
the influence of the operating parameters, i.e. the speed factor nED , discharge factor QED and
Froude number Fr on the cavitation compliance Cc. The main objective of this paper is to create
a simplified analytical model that enables a better understanding of the physics determining the
Cc values. The model presented here assumes an axisymmetric cylindrical cavitating vortex.
It does not try to fully describe the kinematics behind the non-axisymmetric vortex rope, but
aims at identifying in a simplified way the influence of nED , QED , Fr and Thoma number σ in
the resulting cavitation compliance. Based on this model, a method is developed to transpose
values of the cavitation compliance and the wave speed to other operating conditions and from
the model to the prototype scale.
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2. Methodology
2.1. Simplified equation for the wave speed
For a straight pipe with 2-phase flow assuming no mass exchange between phases, the continuity
and the momentum conservation equations for the liquid phase only can be written as:{
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where Al is the cross-section of the water in the liquid state and Cm is the flow velocity in
the axial direction. The mass in the vapor phase is neglected. Assuming that Cm is small and
neglecting the gravity and viscous effects, these equations can be simplified as: ∂Cm
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From the system of equations above, the following equation for the wave speed is found:
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where Ewater is the liquid bulk viscosity, Ep is the pipe elasticity modulus and e is the pipe

thickness [2], Cc is the cavitation compliance defined as Cc = −∂Vv/∂h = ρgLp
(
∂Al/∂p − ∂Ap/∂p

)
[3], h is the piezometric pressure in meters of water column, Lp is the pipe length and Ap is the
pipe cross-section which is equal the sum of the liquid and vapor cross-sections (Al and Av).
Considering the geometry and the mechanical properties of the turbine and test rig where the
measurements were performed, it has been noticed that the terms containing the water bulk
modulus and the pipe elasticity are orders of magnitude smaller than expected values for the
term containing the cavitation compliance. Therefore, these terms can be neglected and the
wave speed calculated as:

a = ±
(

Cc
AlgLp

)−1/2
= ±

[
Cc

gLpAp (1 − β)

]−1/2
(4)

where β is the void fraction β = Vv/Vp = Av/Ap = 1 −Al/Ap.

2.2. Simplified analytical model for the calculation of β and Cc
The model described here considers the following assumptions:

• the pressure inside the cavitation vortex is assumed constant and equal to the vapour
pressure;

• the water surface tension is negligible, making the pressure at the interface liquid-vapour
equal to the vapor pressure, i.e. p (Rv) = pv.

• the cavitation volume and the pipe are axisymmetric with respect to the axial direction;

• the cavitation volume in the draft tube is assumed to have a constant length and a circular
cross-section with constant radius;

• the axial velocity Cm is uniform throughout the liquid cross-section Al.

If the tangential speed Cu is assumed to be constant, the integration of the Navier-Stokes
equation in the radial direction from the liquid-vapor interface Rv to the pipe radius Rp gives:
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Cu
2 ln
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)
=
pp − pv
ρ

(5)

where pp is the pressure at the pipe wall. The term on the right side of Equation 5 can be
easily related to the Thoma number σ = NPSH/H, where H is the net head and NPSH is the
Net Positive Suction Head. By ignoring the losses in the draft tube, Equation 5 can be written
in terms of β and σ as:

β = e
− 2g

Cu2 (σH+Zref−Zcone− Q2

2gAl
2 )] (6)

where Q is the discharge, Zref is the reference level for the σ calculation and Zcone is
considered here as the level of the draft tube cone center. By deriving Equation 5 with respect
to pp and neglecting the variations of the pipe radius and water density, an expression for the
cavitation compliance can be found:

Cc =
2gLpAl

Cu
2 β (7)

As the real non-axisymmetric cavitation vortex rope is approximated by an axisymmetric
model, the tangential velocity Cu can be seen as an indication of the swirl intensity of the
vortex.

In order to assess the validity of this model, the first eigenfrequency of the whole test rig
was determined while the reduced scale model of the turbine operated at different operating
conditions, i.e. with different values of nED , QED , Fr and Thoma number σ [4]. By knowing the
properties of all the other parts of the test rig, a SIMSEN model is then used to identify the
cavitation compliance at the location of the vortex rope [5]. For these measured points, once Cc
is known, Cu and β can also be calculated using Equations 7 and 6.

For all the transpositions presented in this article, the polynomial curve fit based on the
measurements presented in Figure 1(a) are used as a reference from which all the values are
transposed. The x axis of this figure is QED/QED

S=0, where QED
S=0 corresponds to the value

in the swirl-free condition for the same speed factor nED . Measurements performed at different
nED values have shown a very similar curve as long as they keep the same NPSH and Fr (Figure
1(b)). It can then be assumed that variations of nED have a small impact on the Cc values, as
long as QED/QED

S=0, NPSH and Fr are kept the same.
To transpose the Cc values from the reference presented in Figure 1(a) to another chosen

operating condition, the steps below are followed:

• by knowing the ratio QED/QED
S=0 of the point of interest, the reference Cc value from

Figure 1(a) is found. As discussed earlier, nED is expected to have a minor influence on the
Cc value;

• from the reference Cc value, Cu reference is obtained by combining Equations 6 and 7;

• Cu reference is then transposed to the new chosen operating condition assuming that the
dimensionless speed ratio Cu/nD remains constant;

• as all the terms in Equation 6 are now known for the new operating condition, β can be
calculated;

• the new Cc is calculated using Equation 7, using the new Cu and β.

3. Results and discussions
In Figure 2, the measured and calculated values of Cc are shown for two σ-values different from
that presented in Figure 1. A very good agreement between measurements and calculations is
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(a) Cc from measurements and the polynomial
best fit used as a reference.
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Figure 1: Cavitation compliance obtained from measurements. (a) nED = 0.288, used as a
reference. (b) Comparison for different nED values with the same NPSH and Fr.

obtained for σ = 0.10. For σ = 0.13, the calculated curve seems to follow a slightly different
tendency.

To formulate a hypothesis explaining this deviation, a better understanding of the physics
responsible for the shape of the reference Cc curve in Figure 1 is necessary. It is possible to notice
three main tendencies: firstly, for low values of QED where the flow is very chaotic and turbulent,
Cc values increase up to a maximum value where the cavitating vortex rope is fully structured
[6]; secondly, as QED increases, a small reduction of Cc is noticed as the swirl intensity at the
runner outlet also decreases; finally, as the swirl intensity continues to decrease, the vortex rope
gets smaller and no longer reaches the draft tube elbow, resulting in a steeper descent in the
value of Cc as the model presented here does not take into account this length reduction, but
calculates an equivalent cavitation compliance for a constant length.

As the σ-value increases, not only does the vortex rope become smaller, but the range of
QED values where the vortex rope is fully structured, well developed and reaches the draft tube
elbow seems to become shorter as well.
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Figure 2: Comparison between the calculated and measured cavitation compliance while varying
only the σ-value from the reference operating condition.

To verify the influence of both σ and Fr for constant values of QED and nED , another
comparison between measured and calculated Cc values is presented in Figure 3. In this figure,
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the reference values obtained from the polynomial best fit shown in Figure 1 is represented by
the red dots. From this two reference values at two different QED , the values represented by
the blue lines are calculated. The calculated values show a small variation of the Cc values for
the different Fr conditions that were tested, but these variations could not be properly assessed
through these results due to the uncertainty of measurements. Except for very low σ-values,
good agreement between measurements and calculations are obtained.
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Figure 3: Comparison between calculated and measured cavitation compliance for two different
QED , while varying both σ and Fr values from the reference.

4. Conclusions
This paper presents a simple model representing the physics of the cavitating vortex rope. Based
on this model, a method allowing the transposition of cavitation compliance values from a given
operating condition to another is proposed. The method has been tested only for partial load
conditions so far.

To be used as a reference, the model requires the determination of the cavitation compliance
Cc for at least one nED value, the QED value varying through the partial load condition. From
this reference, Cc can be calculated for another nED , σ and Fr conditions. Although it has
not been tried in this paper, this method is expected to be used for the estimation of the Cc
at the prototype scale based on the measurements made on the reduced scale model. As the
Fr similarity is not always respected and the value of σ cannot be chosen during tests on the
prototype, transposition of Cc might become necessary.

Further investigations will verify the applicability of this model to full load conditions.
Different flow velocity profiles might be tested. Comparisons between model and prototype
measurements are also expected in the future.
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