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Abstract. The aim of the paper is to describe the special critical case in the theory of
singularly perturbed optimal control problems. We reduce the original singularly perturbed
problem to a regularized one such that the existence of slow integral manifolds can be established
by means of the standard theory. We illustrate our approach by an example of control problem.

1. Introduction
Consider singularly perturbed differential systems of the type

dx
dt = f(x, y, t, ε),

ε dy
dt = g(x, y, t, ε)

(1)

where x and y are vectors, ε is a small positive parameter.
Such systems play an important role as mathematical models of numerous nonlinear

phenomena in different fields (see e.g. [1, 2, 3, 4, 5, 6, 7]).
A usual approach in the qualitative study of (1) is to consider first the so called degenerate

system

dx

dt
= f(x, y, t, 0),

0 = g(x, y, t, 0)

and then to draw conclusions for the qualitative behavior of the full system (1) for sufficiently
small ε. In order to recall a basic result of the geometric theory of singularly perturbed systems
we introduce the following notation and assumptions for sufficiently small positive ε0, 0 ≤ ε ≤ ε0.

(A1). Functions f and g are sufficiently smooth and uniformly bounded together with all
their derivatives.

(A2). There are some region G ∈ Rm and a function h(x, t, ε) of the same smoothness as g
such that

g(x, h(x, t), t, 0) ≡ 0 ∀(x, t) ∈ G ×R.
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(A3). The spectrum of the Jacobian matrix B(x, t) = gy(x, h(x, t), t, 0) is uniformly separated
from the imaginary axis for all (x, t) ∈ G × R, i.e. the eigenvalues λi(x, t) (i = 1, . . . , n) of the
matrix B(x, t) satisfy the inequality

|Reλi(x, t)| ≥ γ (2)

for some positive number γ.
Then the following result is valid (see e.g. [8, 9]):
Proposition 1.1. Under the assumptions (A1)−(A3) there is a sufficiently small positive ε1,

ε1 ≤ ε0, such that for ε ∈ (0, ε1) system (1) has a smooth integral manifold Mε ( slow integral
manifold) with the representation

Mε := {(x, y, t) ∈ Rn+m+1 : y = ψ(x, t, ε), (x, t) ∈ G ×R}

and with the asymptotic expansion

ψ(x, t, ε) = h(x, t) + εψ1(x, t) + . . . .

The motion on this manifold is described by the slow differential equation

ẋ = f(x, ψ(x, t, ε), t, ε). (3)

Remark 1.1. The global boundedness assumption in (A1) with respect to (x, y) can be relaxed
by modifying f and g outside some bounded region of Rn ×Rm.

Remark 1.2. In applications it is usually assumed that the spectrum of the Jacobian matrix
gy(x, h(x, t), t, 0) is located in the left half plane. Under this additional hypothesis the manifold
Mε is exponentially attracting for ε ∈ I1.

The case that assumption (A3) is violated is called critical. We distinguish three subcases:
(i) The Jacobian matrix gy(x, y, t, 0) is singular on some subspace of Rm × Rn × R. In that

case, system (1) is referred to as a singular singularly perturbed system [10].
(ii) The Jacobian matrix gy(x, y, t, 0) has eigenvalues on the imaginary axis with nonvanishing

imaginary parts. A similar case has been investigated in [3, 4, 11].
(iii) The Jacobian matrix gy(x, y, t, 0) is singular on the setM0 := {(x, y, t) ∈ Rm×Rn×R :

y = h(x, t), (x, t) ∈ G ×R}. In that case, y = h(x, t) is generically an isolated root of g = 0 but
not a simple one.

Other critical cases were considered, for example, in [3, 4, 12].
The critical case (i) has been treated in [3, 4, 6, 10, 13] and it was considered as applied to

the high-gain control problem in [3, 4].
The case (ii) was considered as applied to the manipulator control in [3, 4].
The case (iii) was considered as applied to the partially cheap control problem, see, for

example, [3, 4].
It is not inconceivable that combinations of other pairs of critical cases and even thrice critical

case are of interest as well.

2. Thrice Critical Case
Consider the control system

εẋ = A(t, ε)x+ εB(t, ε)u, x ∈ Rn+m, x(0) = x0 (4)
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with the cost functional

J =
1

2
xT (1)Fx(1) +

1

2

1∫
0

(xT (t)Q(t)x(t) + εuT (t)R(t)u(t))dt. (5)

where A, F1, Q are (n× n)-matrices, B is (n×m)-matrix, and R is (m×m)-matrix. Suppose
that all these matrices have the following asymptotic presentations with respect to ε:

A(t, ε) =
∑
j≥0

εjAj(t), B(t, ε) =
∑
j≥0

εjBj(t), Q(t, ε) =
∑
j≥0

εjQj(t), R(t, ε) =
∑
j≥0

εjRj(t),

F (ε) =
∑
j≥0

εjFj ,

with smooth on t matrix coefficients, t ∈ [0, 1].
The solution of this problem is the optimal linear feedback control law

u = −ε−1R−1BTP (t, ε)x,

where P satisfies the differential matrix Riccati equation

εṖ = −PA−ATP + PSP − εQ, P (1, ε) = F. (6)

Setting ε = 0 we obtain from (6) the matrix algebraic equation

−MA0 −AT
0M +MS0M −Q0 = 0,

where S0 = B0R
−1
0 BT

0 and M = P (t, 0).
For systems with low energy dissipation the matrices S0 and Q0 are equal to zero and the

main role plays the linear operator

LX = XA0 +AT
0X.

For this class of systems the eigenvalues of A0 are pure imaginary and the spectrum of the linear
operator L has a nontrivial kernel, since sums (λi(t) + λj(t)), i, j = 1, . . . , n, form its spectrum.
This means that the equation (6) is singular singularly perturbed. Thus, the dimension of the
slow integral manifold of (6) is greater zero and the problem under consideration is critical in
this sense. Moreover, under taking into account that zero eigenvalues are multiple and all other,
nonzero eigenvalues of L, are pure imaginary, it is possible to say that this problem is thrice
critical.

2.1. Example
Let

A =

(
−ε 1
−1 −ε

)
, B =

(
0
1

)
, R = (1) , Q =

(
1 0
0 0

)
,

F =

(
0 0
0 0

)
, S =

(
0 0
0 1

)
, P =

(
p1 p2
p2 p3

)
.

Consider the corresponding differential system

εṗ1 = 2p2 + 2εp1 + p22 − ε, p1(1) = 0,
εṗ2 = 2εp2 − p1 + p3 + p2p3, p2(1) = 0,
εṗ3 = −2p2 + 2εp3 + p23, p3(1) = 0.

(7)
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First, we need to separate it into a slow and a fast subsystem. At first glance, all three equations
are singularly perturbed. However, setting ε = 0 we obtain p1 = p2 = p3 = 0, and we should
consider the matrix of leading terms on the right hand side of the system, which has the form 0 2 0

−1 0 1
0 −2 0


Obviously, this matrix has a zero eigenvalue and two pure imaginary eigenvalues, i.e. the problem
under consideration is twice critical. Moreover, the trivial solution is multiple. This means that
we have thrice critical case.

Let ε = µ2. Introducing the new variables

p1 = µ2q1 + µ, p2 = µ2q2 + µ2/2, p3 = µ2q3 + µ,

and then s = q1 + q3, we obtain the differential system

µṡ = 2q3 + µq2 + 2µs+ µq22 + µq23 + 4 + µ/4,
µ2q̇2 = −s+ 2µ2q2 + 2q3 + µq2 + µ2q2q3 + µ/2 + µ2,
µ2q̇3 = −2q2 + 2µq3 + 2µ2q3 + µ2q23 + 2µ

(8)

with the slow variable s and two fast variables q2, q3.
The last system possesses one-dimensional slow invariant manifold which is weakly attractive

with respect to argument 1− t because the main matrix of the fast subsystem is(
µ 2
−2 2µ

)
.

Thus, the dimension of the system of Riccati differential equations can be reduced from three
to one. Let us construct the slow integral manifold using the fact that it can be asymptotically
expanded in powers of the small parameter. Setting

q2 = ϕ(s, µ) = µϕ1(s) + µ2 . . . ,

q3 = ψ(s, µ) = ψ0(s) + µψ1(s) + µ2 . . . ,

we obtain
ψ0(s) = s/2, ϕ1(s) = s/2, ψ1(s) = −1/4.

Thus we obtain the slow invariant manifold

q2 = µs/4 +O(µ2), q3 = s/2− µ/4 +O(µ2),

with the equation on the integral manifold

µṡ = 4− µ/4 + (1 + 2µ)s+ µs2/4 +O(µ2).

Neglecting by terms of order O(µ2) we obtain the scalar solvable equation

µṡ = 4− µ/4 + (1 + 2µ)s+ µs2/4, s(1, µ) = −2/µ, (9)

and it is possible to obtain the solution of this initial value problem in the analytical form:

s = S(t, µ).
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Setting for example, ε = 0.01, i.e. µ = 0.1, we obtain

S(t) = −24−
√

417 tanh(5.105144465t− 5.303589885).

For initial variables p1, p2, p3 we obtain the following formulae

p1 = µ+ µ2S(t, µ) + µ3/4 +O(µ4),
p2 = µ2/2 + µ3S(t, µ)/4 +O(µ4),
p3 = µ+ µ2S(t, µ)− µ3/4 +O(µ4)

(10)

which describe the solution of 10 corresponding to the slow invariant manifold.
The Fig. 1 demonstrates the closeness of solutions of the original system and the system on

the slow invariant manifolds for p1(t). The similar situation takes place for p2 and p3, see Fig.
2 and Fig. 3.

Figure 1. The graphs of p1 for original differential system (green line) and for the equation on
the slow invariant manifold (red line), µ = 0.1.

3. Conclusion
The special critical case for singularly perturbed differential systems are studied in the paper.
We have considered singularly perturbed control problem as an application. It has been shown
that the reduction of dimensions of these problems can be done by means of the integral manifold
method. The slow integral manifolds for the matrix Riccati equation of linear-quadratic control
problem are constructed and it is shown that the method of integral manifolds allows us to
reduce the dimension of control problems. This approach was used for the investigation of
optimal filtering problems in [16, 17].
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Figure 2. The graphs of p2 for original differential system (green line) and for the equation on
the slow invariant manifold (red line), µ = 0.1.

Figure 3. The graphs of p3 for original differential system (green line) and for the equation on
the slow invariant manifold (red line), µ = 0.1.

MURPHYS2016                                                                                                                                   IOP Publishing
IOP Conf. Series: Journal of Physics: Conf. Series 811 (2017) 012017          doi:10.1088/1742-6596/811/1/012017

6



References
[1] Vasilieva A B, Butuzov V F and Kalachev L V 1995 The Boundary Function Method for Singular Perturbation

Problems (Philadelphia: SIAM)
[2] O’Malley R E 1991 Singular Perturbation Methods for Ordinary Differential Equations Appl. Math. Sci. 89

(New-York: Springer–Verlag)
[3] Mortell M P, O’Malley R E, Pokrovskii A and Sobolev V A 2005 Singular Perturbation and Hysteresis

(Philadelphia: SIAM)
[4] Shchepakina E, Sobolev V and Mortell M P 2014 Singular Perturbations. Introduction to System Order

Reduction Methods with Applications (Lect Notes in Math 2114) (Berlin–Heidelber–London: Springer)
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