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Abstract. Prandtl-Ishlinskii stop-type hysteresis operators allow for modeling elasto-
plasticity in the relative stress-strain coordinates including the saturation level of the residual
constant-tension flow. This lies in direct equivalence to the force-displacement characteristics of
nonlinear Coulomb friction, whose constant average value at unidirectional motion depends on
the motion sign only, after the transient presliding phase at each motion reversal. In this work,
we analyze and demonstrate the use of Prandtl-Ishlinskii operators for modeling the Coulomb
friction with presliding phase. No viscous i.e. velocity-dependent component is considered at
this stage, and the constant damping rate of the Coulomb friction is combined with the rate-
independent losses of presliding hysteresis. The general case of Prandtl-Ishlinskii operator with
a continuous distribution function is considered together with a finite elements case, which
is useful for implementation in multiple applications. Finally, identification of parameters is
addressed and discussed along with two experimental examples.

1. INTRODUCTION

Coulomb friction [1], which is well-established and often understood as a “classical” dry friction
law, expands the Amontons’ theory, which postulates that the tangential friction force F' is
p-proportional to the normal load L. Coulomb postulated the dry friction law of the form

F=uL+C, (1)

where the correction term C' allowed for dependence of the friction force on the surface reactions
on a microscopic (molecular) level, such as surface asperities in contact, and is independent of
the normal loading and contact surface [2]. The standard notation of the Coulomb friction law
for steady-state kinetic friction assumes a discontinuous dependence of the friction coefficient
on the relative sliding velocity g, so that

F = pLsign(y) (2)

For constant normal loads and homogenous, time-invariant, frictional surfaces, a lumped
Coulomb friction coefficient puL := F, is usually assigned. In order to avoid discontinuity
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in the Coulomb friction law (2), and therefore make it appropriate for numerical simulations
and control applications, in particular at zero velocity crossing, several empirical and heuristic
approaches have been proposed for capturing the so-called presliding behavior of kinetic friction
(see e.g. [3, 4] for details). Examples of such approaches include the Dahl model [5], Maxwell-
slip model [6], modified Maxwell-slip model [7]. Note that more comprehensive dynamic friction
models, such as LuGre model [8], generic model at asperity level [9], and two-state dynamic
friction model with elasto-plasticity [10], also incorporate the presliding friction behavior. The
presliding friction effects have been observed in various tribological and other friction-related
experiments, see e.g. [3, 11, 12, 13].

An interesting fact is that the so-called Maxwell-slip model structure [6] coincides with the
Prandtl-Ishlinskii (PI) stop-type hysteresis model, for details on the latter we refer to [14, 15, 16].
This model relies on elementary Prandtl-Ishlinskii stop-type hysteresis operators, which are
rheological elements well established for describing effects of elasto-plasticity. The Prandtl-
Ishlinskii stop-type hysteresis operator is dual to the Prandtl-Ishlinskii play-type operator (see
e.g. [16] for details) which, in turn, is well-known in mechanics and is used for describing the
kinematic play, also known as backlash, in the machine elements and mechanisms. The Prandtl-

Figure 1. Prandtl-Ishlinskii play-type operator transitions.

Ishlinskii play-type operator is schematically illustrated in Figure 1. The operator provides
a rate-independent map of time series y to time series x, which can be considered in various
functional spaces such as W', C', BV and the space of regulated functions. This map depends
on the initial state xg and threshold parameter » > 0. The latter determines the width 2r of
the play-zone. The operator in the differential form is given by

y 1f$:y_ray20a
=< g if e=y+r, §<0, -yl <r (3)
0 fy—r<zc<y+r,

for a.e. t > t.

The general Prandtl-Ishlinskii model is formulated as a superposition (parallel connection)
of elementary stop-type operators. A set of free parameters is used to map the distribution of
elementary stop-type operators to the actual shape of hysteresis loops of the Prandtl-Ishlinskii
model. Actually, it is the initial loading curve, often referred to as the “virgin curve” [17] (due
to the memory-free “virgin” contacts on the frictional interface) that determines the shape of
the force-displacement transitions and therefore the presliding friction hysteresis. According
to Madelung’s rules originally proposed in magnetism [18], and quite similar Masing’s rules
with origins in structural mechanics [19], measuring the initial loading curve is sufficient for a
complete identification of parameters of the Prandtl-Ishlinskii hysteresis model.
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The aim of this paper is to discuss how the Prandtl-Ishlinskii hysteresis operators can be
efficiently used for modeling nonlinear Coulomb friction with presliding hysteresis transitions.
In real-life mechanical systems to be simulated and controlled the problem of Coulomb friction
discontinuity is one of the most crucial issues for proper system analysis, proof of stability, and
control design. An appropriate incorporation of presliding phase into Coulomb friction law is an
essential condition for the model-based analysis of system dynamics, damping properties, and
synthesis of friction compensation methods. In particular, motion control problems of exact
positioning type, see e.g. [20, 21], require a better perception of presliding friction behavior at
the motion onset and reversals. Presliding friction effects are particularly important in such
applications as rolling bearing nanopositioning stages [22], hard disk drives [23], ball-screw-
driven positioning stages [24], hydraulic cylinders [25], and others.

Several strong assumptions are made here in relation to the friction behavior to be considered:

(i) No viscous (proportional to the relative velocity) friction effects are included.

(ii) The breakaway (static friction) force due to adhesion is not considered so that no velocity
weakening [4], also referred to as Stribeck effect, occurs at the transients between the
presliding and gross sliding regimes.

(iii) The so-called smooth sliding with the averaged constant Coulomb friction force is
considered. Hence, true stick-slip dynamics on the atomic level of frictional interfaces
with related Frenkel-Kontorowa and Prandtl-Tomlinson type interactions (see [26, 27] for
details) are not addressed.

The paper is organized as follows. The finite elements case with a finite number of Prandtl-
Ishlinskii (PI) stop-type operators and one additional discontinuous element required for the
motion system to be asymptotically stable is described in Section 2. The general Prandtl-
Ishlinskii operator with a continuous distribution function is discussed in Section 3. Estimation
and identification of free parameters for the proposed modeling approach is discussed in Section
4, where we also present two experimental examples. Section 5 contains conclusions.

2. FINITE ELEMENTS CASE

In the finite elements case, a parallel connection of N single elasto-plastic elements with a
common input is considered. Due to their superposition and the absence of coupling between
the elements, the total output friction force is given by simple superposition

N
Fly)=) F;. (4)
j=1

Note that the input argument in (4), which is the same for each single elasto-plastic element,
is the relative displacement y and not the relative velocity ¥, as it is assumed in the general
case of kinetic friction addressed in Section 1. However, a differential form of PI operators with
y used as the input is also available, see e.g. in [28]. Recall that each elasto-plastic element j
representing a stop-type PI operator can be described by

Fj:kjfja fj:y_xj(yvrj)7 (5)

where k; is the stiffness coefficient, f; is the elastic deformation, and x; is the output state of the
corresponding play-type operator illustrated in Figure 1. The free parameters are the individual
break-away force level c¢; and presliding stiffness k; of each elementary elasto-plastic element.
These two parameters are related through the threshold value of the play-type PI operator, i.e.

rj=cj/kj. (6)
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One can recognize that both parameters control the individual transition between presliding and
sliding and therefore determine piecewise linear segments of the force-displacement presliding
hysteresis curve. An example of such curve with three elasto-plastic elements is schematically
illustrated in Figure 2. The shadowed regions characterize the presliding range. It is important

F +

c

Figure 2. Presliding friction behavior and its piecewise linear approximation.

to note that after each motion reversal and at the onset of relative motion, each elasto-plastic
element in the structure is first sticking before passing into the sliding. Therefore, the initial
presliding stiffness after each motion reversal, which occurs at a relative position y(t,), is equal
to the cumulative stiffness of all elasto-plastic elements so that

N
= ij (7)

It has been shown in [28] that for an unforced motion system (with friction force F') to be globally
asymptotically stable in the Lyapunov sense, i.e. to have the global zero motion equilibrium, at
least one elasto-plastic element should have k; — oo (see Corollary 2 in [28]). In other words,
after each motion reversal at least one elasto-plastic element is immediately in sliding. This
corresponds to a constant Coulomb-type friction force with discontinuity at the velocity zero-
crossing. Recall that the overall Coulomb friction force with discontinuity, i.e. F ~ sign(y),
constitutes the limit case of presliding hysteresis curves at motion reversals, see [29] for details.

In order to illustrate the initial stiffness behavior of presliding friction hysteresis, consider a
finite elements case with N = 3 stop operators with ¢;_3 = [1, 1, 1]. We set kg3 = [10, 4], and
vary the stiffness of the first element by an order of magnitude, k; = {500, 50, 5}. Friction-
displacement hysteresis curves obtained from the same input sequence are shown in Figure 3.

OF (t)

T

Ay(t)

‘y=y(tr)

In order to make the finite elements friction modeling globally asymptotically stable, equation
(4) should be modified in such a way that at least one element does not exhibit an elastic phase
and passes into sliding immediately after each motion reversal. This can be achieved by adding
the Coulomb friction law with discontinuity, thus yielding

N
F(y,5) = crsign(y) + Y Fj . (®)
=2

It is obvious that 0 < ¢; < F, should hold while

N
ch:F67 (9)
=1
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Figure 3. Presliding friction hysteresis curves for a varying stiffness of one elasto-plastic element
within the model with 3 PI stop-type operators.

where F is the Coulomb friction coefficient, which determines the maximal friction amplitude
at unidirectional motion. Several important properties of the presliding friction behavior can be
derived for model (8):

e For ¢; > 0, the total friction behavior has infinite stiffness at each motion reversal,
independent of presliding or sliding state in the relative force-displacement coordinates.
This is in accord with stiction friction phenomenon, for which a certain amount of external
force is first required to move an idle motion system with friction from zero equilibrium.

e If the elementary stiffnesses satisfy k; — oo for all j € [2,..., N], then the total friction
force satisfies F(y,y) — Fesign(y), which corresponds to the “classical” Coulomb friction
law and represents the limit case of presliding hysteresis friction.

o With N — oo, the friction force equation (8) can be transformed into the general PI model
considered in the next section.

3. GENERAL CASE

A more general Maxwell-slip friction model includes an infinite number of stop-type PI operators
parameterized by the threshold r, which ranges over an interval of values 0 < r < R. Using this
formalism, the friction force can be modeled by the following counterpart of relation (8):

R
Ply.i) = exsigns) + [ flo.r) dur) (10)
with the normalized force f(r) (or, equivalently, elastic deformation) given by

fly,r) =y —x(y,r), (11)

where z(y,r) is the output state of the play-type PI operator, which has threshold r (cf.
Figure 1). The term ¢;sign(y) in (10) corresponds again to the element with infinite stiffness.
The Riemann-Stieltjes integral with a distribution function x in (10) is a PI operator of general
type [14].

In particular, with a piecewise constant distribution

N

wr) =Y kiH(r —r;),

J
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where H is the Heaviside step function, formula (10) with R > maxr; reduces to the finite
elements case (8).

If the distribution function y is continuous, then the unforced motion system with friction (10)
is globally asymptotically stable even in the case when ¢; = 0, i.e. stiffness is uniformly bounded
for all elements (see [28]). This is because for any motion, elements with a sufficiently small
threshold r are always in sliding, hence any motion dissipates energy due to friction. This can be
compared to the finite elements case (8), in which sufficiently small oscillations do not dissipate
energy because all the elements are in pre-sliding mode, and the system effectively behaves as a
harmonic oscillator. If ¢; = 0, then the motion system with a continuous distribution function
p will produce infinitely many damped oscillations of decreasing vanishing amplitude. On the
other hand, if ¢; > 0 (i.e. there is an element with infinite stiffness), then the motion comes to a
complete stop after a finite number of oscillations both in cases of discrete-valued and continuous
u distribution.

Assuming the lumped unity mass (i.e. m = 1), the equation of free motion with friction (10)
has the form

R
i0) + crsign(9(0) + [ (u(6).1)) dutr) = 0. (12)
and the total energy of this system is

B=(#+ /0 R(f(yw)fdu(r)) :

Note that the maximal elastic force associated with the integral term in (12) equals

fo /Oer,u(r).

Clearly, if the stiction friction level exceeds this force,
c > Iy,

then any free motion of the mass m will proceed in the direction of the initial momentum until,
after a finite time, the mass will come to a complete stop because the static friction will balance
the elastic force at the stopping point.

Now, assuming that the opposite inequality holds, ¢; < F},, and the initial momentum
(energy) is sufficiently large, let us consider the conditions, which ensure that the trajectory
makes one turning point before the motion comes to a complete stop. Without loss of generality,
let us suppose that the initial momentum is negative and place the origin, y = 0, at the first
turning point of the motion. Then, the second turning point satisfies y. > 0. If the initial
momentum is sufficiently large, then the elastic force at the first turning point is at its maximal
value F,, and the equation of motion between the first turning moment ¢; when y(¢1) = 0 and
the second turning moment to when y(t3) = y. reads

§(t) + 1+ D(y(t) =0 (13)

with the elastic force given by

y/2 R
B(y) = /0 rdpu(r) + / (v — r)dp(r) | (14)
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where y increases from y(t1) = 0 to y(t2) = ye and y(t1) = y(t2) = 0. Multiplying (13) by y
and integrating the resulting equation from ¢; to to yields the following equation for the second
turning point y.:

Ye
C1Ye +/ P(y)dy =0. (15)
0

The motion comes to a complete stop at this point if the stiction friction level exceeds the elastic
force, that is if
c1 > D(ye). (16)

Thus, the free motion with a sufficiently high initial momentum exhibits exactly one reversal
(turning point) before coming to a complete stop if condition (16) holds for the smallest positive
root y. of equation (15) with the function ® defined by (14). Continuing the same line of
argument, one obtains similar conditions, which ensure that the motion stops after making
exactly n reversals.

4. IDENTIFICATION OF PARAMETERS

In most cases, the identification of parameters of the friction model is done on a real motion
system, for which both a moving mass (inertia) and frictional contact interface constitute the
given physical matters. Assuming a general driving input force u, which can be the control
value, and the lumped mass m, the motion dynamics with friction (8) is described by

N
mij(t) + c1sign(y(t)) + Z ki(y(t) — i (y,r5)) = ult) (17)

(cf. (12)). Assuming that the control value u(t), relative displacement y(t) and at least its first
time derivative are the measurable quantities, the model identification reduces to finding of the
best-fit of the free parameters (friction model and mass) based on the generated and recorded
experimental data. Here the model identification errors can be built based on either motion or
force quantities, i.e. forward or inverse model, while the other signals constitute the available
regressors for identification. All the residual parameters, with the exception of thresholds of stop-
type operators, contribute linearly to (17), makes the identification procedure straightforward.
According to [30] and [31], both linear regression (LS) and nonlinear regression (NLS) approaches
are well suited for indentifying the Maxwell-slip-type structure, which is equivalent to the PI
model. For the LS approach, a pre-assignment of elements’ threshold values (equivalent to the
break-away force level) is however required, since these are not linear parameters according to
from (17). Various numerical routines are available for solving either LS or NLS problem related
to (17). Here we abstain from presenting details of identification algorithms and instead refer
to the fundamental literature on system identification, e.g. [32].

Two experimental tests, both aimed at comparing the measured and modeled motion response
in vicinity of an equilibrium state, i.e. full motion stop, are presented below. We note that before
the full stop the moving mass can exhibit at least one detectable reversal. This effect is due to a
finite non-zero inertia, which is antagonized by presliding friction with elasto-plastic interactions
on the contact interface. The targeted motion phase represents an unforced system dynamics
(equation (17) with zero right-hand-side) with non-zero initial conditions which are detectable
from the available measurements. This operation regime is particularly suitable for exposing
the presliding friction and contact stiffness at motion reversals.

In both experimental tests shown below, the identified parameters of the model with four
elasto-plastic elements (N = 5) are m, F, c1, ko, ks, k4, and k5. For the sake of simplicity and
in order to avoid local minima during the curves fit, the break-away force level of the single
stop-type elements are assumed to have one and the same value co_5 = (F. — ¢1)/4. This is a
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reasonable pre-assignment for mapping the initial loading curve when the number of elements
equals to or exceeds 3 (for more details see the identification results in [31, 33]).

FExperimental test I

The first experimental test, the same as reported in [28, 29], represents a steady-state motion
with the constant velocity at constant (control) input force at the beginning. Afterwards,
the control input is switched-off and the relative motion decelerates to zero being driven by
the counteracting friction only. The control signal and the measured relative velocity are
shown in Figure 4. An almost linear slope of the decreasing relative velocity points to the
predominance of the constant Coulomb friction force for which the unforced motion dynamics
is § = —(F./m)sign(y). After the first velocity zero-crossing, a low negative overshoot occurs,
which is the motion reversal followed by a low-velocity displacement (at time between 0.09 sec
and 1.13 sec) before the final motion stop. Note that the depicted relative velocity is the discrete-
time derivative of the recorded incremental encoder signal. Therefore the pulsed pattern does
not imply any measurement noise but the actual low velocity, which is inherently subject to
the discretization and quantization effects. The same can be said about the measured velocity
pattern during the decreasing slope related to the constant deceleration. The identified model

15
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Figure 4. Experimental test I (measurement and model): velocity response in a vicinity of the
motion stop after switching off the constant control force.

response is shown in Figure 4 over the measurement. The curve’s best-fit exhibits, however,
some residual micro-oscillations related to the numerical computation of (17), since the sign-
discontinuity is incorporated.

FExperimental test I

In the second experimental test, the measured data are taken from the free (unforced) system,
which has been first excited by an input impulse. The data that we use is close to the motion
stop and discards the transients, which can include the non-modeled high-frequency components
coming from the unaccounted flexibilities in the system. The measured velocity response under
consideration is depicted in Figure 5(a). Note that the experimental motion system is without
gearing mechanisms, in contrast to Experimental test I, and is equipped with an angular encoder
of higher resolution. This becomes apparent when comparing the increments of the measured
velocity patterns in Figures 4 and 5(a). The negative velocity pattern after the first zero-crossing
is more accurately captured. This provides a more detailed signature of presliding friction after
the motion reversal. The details about experimental setup, from which the measured data
has been obtained, can be found in [34]. The fitted model response shown in Figure 5(a)
demonstrates an accurate match with the measured data. The accuracy of the fitted model
becomes further apparent when analyzing the corresponding phase portrait depicted in Figure
5(b). Here the model-based prediction of relative displacement carries weight in order to decrease
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Figure 5. Experimental test II (measurement and model): (a) velocity response in vicinity the
motion stop; (b) displacement-velocity phase portrait.

an integral error. From both the measured and modeled phase portraits, a marginally visible
second motion reversal can be also recognized. However, this apparently lies beyond the available
measurement accuracies and is not analyzed here.

5. CONCLUSIONS

In this paper, we have explored how the Prandtl-Ishlinskii stop-type hysteresis model, which
is equivalent to the Maxwell-slip structure, can be used for describing the kinetic Coulomb
friction including the presliding phase. The latter is characterized by the rate-independent
force. The so-called initial loading (“virgin”) curves determine the shape of hysteresis loops and
damping characteristics of the unforced motion before the final motion stop. Finite elements
and general continuous distributions have been addressed, and the parameters identification
has been demonstrated with two experimental examples. We have identified conditions which
ensure that the motion stops after a given number of reversals. It would be interesting to
consider a counterpart of equation (17) with interacting stop nonlinearities, for example using
the techniques developed in [35, 36, 37, 38].
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