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Abstract. We explore the possibility of applying the method of order reduction of optimal
estimation problem for singularly perturbed systems with low measurement noise. It is shown
that matrix Riccati equation for the Kalman-Bucy filter has a periodic solution. An optimal
filter is constructed for a dynamic model of a crank mechanism.

1. Introduction and statement of problem
Consider the optimal filtering problem for linear system:

ẋ(t) = A(t, µ)x(t) +B(t, µ)w(t), (1)

where x(t, µ) ∈ Rn is the system state vector, t ∈ R is the time, µ � 1 is a small positive
parameter, A(t, µ) ∈ Rn×n is the dynamic coefficient matrix, B(t, µ) ∈ Rn×m is the process noise
coupling matrix, w ∈ Rm is the zero-mean white Gaussian process noise with given covariance
Q ∈ Rm×m. We assume that the following quantity can be measured:

z(t) = C(t, µ)x(t) + µv(t), (2)

where z(t) ∈ Rk is the measurement vector, C(t, µ) ∈ Rk×n is the measurement sensitivity
matrix, v ∈ Rk is the zero-mean white Gaussian measurement noise with covariance R(t, µ) ∈
Rk×k. Let w(t) and v(t) be independent. The presence of the small parameter in (2) means
that optimal estimation problem with low measurement noise (see [1] and references therein) is
considered.

We are required to obtain an estimate x̂(t) of the state x(t) of system (1) in accordance with
the vector function z(t) available for measurement at t > 0. The solution to this problem may
be obtained by using the Kalman-Bucy filter [2] that involves the solution of the matrix Riccati
equation for the covariance matrix of the filter [3]:

µ2(Ṗ −AP − PAT −BQBT ) = −PCTR−1CP, P (0) = P0. (3)

The asymptotic expansion of solution to the Riccati equation for time-invariant matrices
A,B,C,Q,R in the case of optimal control problem was obtained in [4].

MURPHYS2016                                                                                                                                   IOP Publishing
IOP Conf. Series: Journal of Physics: Conf. Series 811 (2017) 012009          doi:10.1088/1742-6596/811/1/012009

International Conference on Recent Trends in Physics 2016 (ICRTP2016) IOP Publishing
Journal of Physics: Conference Series 755 (2016) 011001 doi:10.1088/1742-6596/755/1/011001

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1



The Riccati equation (3) may be considered as a singularly perturbed ODE system [5, 6] in
a critical case since the corresponding limiting problem (under µ = 0)

PCTR−1CP = 0 (4)

possesses multiple zero solutions [7, 8].
The solution to the differential equation (3) may be separated into the following cases for

t > 0:
Case 0: matrix BQBT is positive definite and rank(C) = n;
Case 1: matrix CBQBTCT is non-singular and rank(C) = r ≤ n;
Case L (L ≥ 2) :

CjBQB
TCT

j = 0, j = 0, L− 2, CL−1BQB
TCT

L−1 > 0, (5)

where C0 = C, Cj = Cj−1A
T − Ċj−1. The solution to the problem (3) in cases 0 and 1 may

be obtained as asymptotic expansion in integer powers of small parameter µ. In case L one
may obtain solution of the problem (3) as asymptotic expansion in fractional powers of small
parameter ε = µ1/L [4]. Thus, neglecting by the initial value condition, we will try to find the
partial solution in the following form :

P (t, µ) =

∞∑
j=0

Pj(t)µ
j/L.

In general, solutions of this kind are the solutions of differential subsystem describing the flow
of the original system on the slow integral manifold [7, 9, 10]. The integral manifolds method
was used for the investigation of optimal control and filtering problems in [11, 12, 13, 14, 15].

In the paper we use a combination of geometric and asymptotic approaches for the
regularization of matrix Riccati equations in some critical cases. Firstly, we try to find a formal
solution to the matrix Riccati equation as asymptotic expansions

pk =
∞∑
j=0

pkj(t)ε
j .

Here, pk is some element of matrix P and ε = µ1/L. Let pksk be the first nonzero coefficient
in the expansion to pk, then we introduce a new variable pk = εskyk. The corresponding ODE
system for new variables possesses the nonzero solution pk = pk(t, ε), pk(t, 0) 6= 0 and we can
obtain singularly perturbed ODE system in a non-critical case.

2. Simple example
Consider the optimal estimation problem for the following system:

ẍ(t) + ax(t) = w(t), x(0) = x0, (6)

where x(t) is a scalar function, a is a constant coefficient, w(t) is a scalar zero-mean white
Gaussian process noise with given dispersion q = 1 + 2µ, where µ � 1 is a small positive
parameter. The following function is available for measurement:

z(t) = x(t) + µv(t), (7)
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where v is a zero-mean scalar white Gaussian measurement noise with given dispersion r = 1.
Functions w(t) and v(t) are independent. Obviously, this problem is similar to the problem (1)
- (2). In this case, we have

A =

(
0 1
−a 0

)
, B =

(
0
1

)
, R =

(
µ2
)
, Q = (q) ,

C =
(

1 0
)
, P =

(
p0 p1
p1 p2

)
.

It is easy to see that in the case under consideration, L = 2.
We use a = 1 for simplicity and construct the matrix Riccati equation (3) for covariance

matrix of the Kalman-Bucy filter:

ṗ0 = 2p1 −
p20
µ2
,

ṗ1 = p2 − p0 −
p0p1
µ2

, (8)

ṗ2 = 1 + 2µ− 2p1 −
p21
µ2
.

The reduced system (4) has the following solution:

p0 = µ
√

2µ, p1 = µ, p2 =
√

2µ(1 + µ). (9)

System (6) may be integrated explicitly and has the following solution:

p0 = µ
√

2µ

(
1− 2e

−
√

2
µ
t

D(t)

(
ν2 cos

(√
2

µ

t

ν

)
+ ν sin

(√
2

µ

t

ν

)
+ 1 + ν2 + e

−
√

2
µ
t

))
,

p1 = µ

(
1− 2e

−
√

2
µ
t

D(t)

((
ν2 + 1

)
cos

(√
2

µ

t

ν

)
+ 1 + ν2

))
,

p2 =
√

2µ(1 + µ)

(
1 +

2e
−
√

2
µ
t

D(t)

(
− ν2 cos

(√
2

µ

t

ν

)

+

(
µ+

ν

(1 + µ)

)
sin

(√
2

µ

t

ν

)
− 1− ν2 − e−

√
2
µ
t

))
,

where ν =
√

1/(1 + 2µ) and

D(t) = 1 + e
−2

√
2
µ
t
+ e
−
√

2
µ
t

(
1

1 + µ

(
ν2 + 1

)
cos

(√
2

µ

t

ν

)
+ 2

(
1 + ν2

))
.

We conclude that the solution of the system (8) tends exponentially to the steady state.

Moreover, the difference between two this solutions is of order O(e
−
√

2
µ
t
) as µ → 0, t > 0.

It means that with very high order of accuracy the steady state may be used instead the exact
solution.
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3. Optimal estimation problem for parametric oscillator
Consider the model of parametric oscillator without damping, but with the presence of process
noise on the right side of equation:

ẍ+ a(t)x = w, (10)

where a(t) is a continuous and uniformly bounded together with a sufficient number of derivatives
function, w is a zero-mean white Gaussian process noise with a given correlation q. We assume
that the following quantity can be measured:

z = x+ µv, (11)

where v is a zero-mean white Gaussian measurement noise with a given correlation r, and µ� 1
is a small positive parameter. Problem (10)-(11) naturally appears when considering the optimal
estimation problem in mechanics. For example, a simple crank mechanism is an arm connected
to a rotating shaft by which reciprocating motion is imparted to the shaft [16]. The dynamic
model of this system is

φ̈+ c

(
1

Im
+

1

I0

)(
1− IMm2r

2

2I0(IM + I0)
cos 2πt

)
φ = w, (12)

where φ is the angle of the shaft, I0 is the average moment of inertia of the crank, IM is the
moment of inertia of the shaft, m2 is the arm mass and c is the stiffness coefficient of the arm.
The system is influenced by an external white Gaussian disturbance w.

The solution of the optimal estimation problem (10)-(11) may be obtained by Kalman-Bucy
filter that involves solution of matrix Riccati equation of the following form:

µ2(ṗ0 − 2p1) = −p
2
0

r
,

µ2(ṗ1 + a(t)p0 − p2) = −p0p1
r
, (13)

µ2(ṗ2 + 2a(t)p1 − q) = −p
2
1

r
.

We note that numerical solution of the singularly perturbed system is the most expensive stage
in the construction of the filter. One should use sufficiently small time step in the numerical
simulations to achieve the desired accuracy of the filter. This issue is of significant importance
in real-time algorithms with limited computational resources.

We introduce variables pi, i = 0..2:

p0 = ε3y0, p1 = ε2y1, p2 = εy2, (14)

where ε2 = µ. Thus, system of equations (13) takes the following form:

εẏ0 = 2y1 −
y20
r
,

εẏ1 = y2 − ε2a(t)y0 −
y0y1
r
, (15)

εẏ2 = q − 2ε2a(t)y1 −
y21
r
.

This singularly perturbed system is not in critical case and usually the integral manifolds method
is used in such a situation [15]. It is possible to construct attracting periodic solution for this
system. We construct the periodic solution for system (15) with accuracy O(ε3). This means
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that the Riccati matrix equation is replaced by the periodic solution which with accuracy O(µ6)
has the form

p0 = µ3 4
√

4qr3 − µ5 a(t)r2

4
√

4qr3
+ µ6

ȧ(t)r2

2
√
qr
,

p1 = µ2
√
qr − µ4a(t)r + µ5

ȧ(t)r

2
√

2
4

√
r

q
, (16)

p2 = µ 4
√

4q3r − µ3a(t) 4
√
qr3√

2
.

4. Numerical experiments
Figure 2 shows comparison of the solution of system (13) for Kalman-Bucy filter covariance for
the crank mechanism model with the periodic solution (16). When using the latter, we don’t
need to solve any system of differential equations because the components of the covariance
matrix for the filter may be computed explicitly. The following parameters are used: c = 1,
I0 = 50, Im = 1, m2 = 1.2, r = 1, µ = 0.05, a(t) = cos(t).The RK4 method is used for solving
system (13) with time step dt = 1× 10−4. We see that the solution of the original system tends
to the periodic solution exponentially, beyond that, the difference between the solutions for p0
is of the order 1× 10−10, for p1 is 1× 10−9 and for p2 is 1× 10−7 (see Figure 3).

5. Conclusion
In this paper, we considered the optimal estimation problem with low measurement noise. The
matrix Riccati system of differential equations for the Kalman-Bucy filter is singularly perturbed.
The method of model order reduction is applicable for this differential system even if the system
is in critical case. It was shown that the periodic solution may be used instead the exact
initially value problem for the matrix Riccati equation for covariance matrix of the filter. This
approach is demonstrated on model of crank mechanism. Our numerical experiment shows
that the difference between the solution of the original matrix Riccati differential system and
the periodic solution is of the order O(µ6). The evaluated example of crank mechanism does
not account for dumping, Coulomb type friction, and structure elasticity, but is used as an
example to show the approach to the reduction the order of optimal estimation problems with
low measurement noise.
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