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Abstract. A model for the growth of lead sulphate particles in a gravity separation system
from the crystal glassware industry is presented. The lead sulphate particles are an undesirable
byproduct, and thus the model is used to ascertain the optimal system temperature configuration
such that particle extraction is maximised. The model describes the evolution of a single,
spherical particle due to the mass flux of lead particles from a surrounding acid solution. We
divide the concentration field into two separate regions. Specifically, a relatively small boundary
layer region around the particle is characterised by fast diffusion, and is thus considered quasi-
static. In contrast, diffusion in the far-field is slower, and hence assumed to be time-dependent.
The final system consisting of two nonlinear, coupled ordinary differential equations for the
particle radius and lead concentration, is integrated numerically.

1. Introduction
Particle settling (or gravity separation) is a technique used in industry to separate liquid
suspensions into one or more of its constitutive solid components by the action of gravity.
Typical gravity separation industrial and medical applications include the removal of silt from
industrial waste [1], the extraction of coal from material matter [2], gold refinery [3] and the
division of blood into its fundamental components [4].

In the present study we consider a gravity settling method used to extract lead sulphate
particles in acid polishing of lead crystal glassware. This process is currently used by an Irish
glassware manufacturer and was originally presented at the 62nd European Study Group with
Industry (ESGI62) [5]. The process begins with grinding where design cuts are inscribed onto
the blank surfaces of the glass leaving it damaged and optically opaque. The damaged glass is
then immersed in a polishing tank containing an aqueous solution of 65% sulphuric acid and
3% hydrofluoric acid. Chemical reactions between the acids and glass result in the formation
of an insoluble lead sulphate layer at the glass surface. This layer obstructs the solution from
reaching the glass, and hence the polishing performance deteriorates over time. Growth of the
layer is counteracted by rinsing the glass regularly in an acidic-water solution. After rinsing, the
solution is pumped into a large cone-shaped settlement tank where the lead sulphate particles
settle out. The acid solution is cooled in the settlement tank such that the lead sulphate
concentration decreases below the corresponding solubility limit in the polishing tank. This
decrease in solubility results in both the precipitation of new small lead sulphate particles and
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the growth of existing particles. However, the formation of the new particles is not desirable as
they take longer to settle compared to existing particles. In addition, if the crystals are not given
enough time to settle they are reintroduced back into the warmer polishing tank where they
dissolve and bring the acid solution closer to saturation. After a period of time the acid solution
once again becomes saturated and the insoluble lead sulphate layer reforms on the glassware.
Repeated use of the settlement tank decreases the time for which the glassware can be polished
effectively.

Previous particle settling studies have generally focussed on the dimensions of the settlement
tank [1, 6], the fluid flow regime [7] or the introduction of an appropriate chemical agent [8].
The aim of this work is to investigate the often neglected influence that temperature has on
gravity separation. In particular, we consider the effect of different temperature configurations
on the growth of insoluble lead sulphate particles. We formulate a model for the evolution
of a single, spherical lead sulphate particle due to the mass flux of lead atoms from the
surrounding acid solution. We simplify the model to a system of two nonlinear ordinary
differential equations for the lead concentration in the acid solution and the particle radius.
We use this system to investigate the effect that three different temperature configurations have
on process performance. Initially, we consider the current constant temperature regime where
the initial temperature of the acid solution adjusts to the tank temperature. Following this
we study the effect of cooling the acid solution at slower rates. Numerical solutions for the
lead concentration and particle radius for each of the temperature regimes are presented. Via
homogeneous nucleation theory, we provide a criterion which determines growth of existing lead
sulphate particles and the dissolution of new, smaller particles.

The outline of this paper is as follows. In Section 2 a model for the growth of a single,
spherical lead sulphate particle is presented. The various temperature configurations are also
highlighted. The governing concentration and particle radius equations are introduced in Section
3. The model for each of the temperature configurations is nondimensionalised in Section 4. The
numerical results are discussed in Section 5.

2. Mathematical model
We consider a single, spherical lead sulphate particle with radius rp ≡ rp(t) growing with time
t in the acid solution. We apply a similar modelling approach used by Liger-Belair et al. [9]
for the case of carbon dioxide bubble nucleation in champagne whereby we assume that the
spherical domain around the particle nucleus can be approximated by two spherical subdomains:
a relatively small boundary layer region around the particle (referred to as the diffusion region)
and a larger far field well-mixed region (see Figure 1). The diffusion and well-mixed regions are
characterised by time-independent and time-dependent lead concentration regimes, respectively.
The radii of the diffusion and well-mixed regions are denoted rd and rw, respectively, such that
rw � rd. We assume that the solution is sufficiently dilute such that particles interactions are
negligible.

Assuming that the solution has an initial, constant lead concentration, C0, the governing
equations are

D

r2
d

dr
(r2dCd

dr
) = 0 ,

dCw

dt
= 0 , (1)

where Cd and Cw are the lead concentrations in the diffusion and well-mixed regions, respectively,
r is the radial coordinate, t is time and D is the diffusion coefficient for the lead atoms. At the
interface of the diffusion region and the well-mixed region we prescribe

Cd(rd) = Cw(rd) , Vw
dCw

dt
= −4πr2dD

dCd

dr

∣∣∣∣
r=rd

, (2)

MURPHYS2016                                                                                                                                   IOP Publishing
IOP Conf. Series: Journal of Physics: Conf. Series 811 (2017) 012001          doi:10.1088/1742-6596/811/1/012001

2



rw

Lead sulphate nucleus

Diffusion
  Region

rd

Well Mixed
  Region

rp
Cd(r)Cw(t)

δ

Figure 1. Lead sulphate particle with surrounding diffusion and well-mixed regions.

where Vw is volume of the well-mixed region. The first of these conditions represents lead
concentration continuity condition, whilst the latter accounts for lead atoms diffusing between
both regions. To track the surface of the particle we use the Stefan-type condition

drp
dt

= DVM
∂Cd

∂r

∣∣∣∣
r=rp

, (3)

where VM is the molar volume. The initial conditions are

rp(0) = R0 , Cw(0) = C0 , (4)

where R0 is the initial particle radius.
The particle solubility is given by the Ostwald-Freundlich condition

Cd|r=rp
= CEQ(T ) exp( 2σVM

RGTrp
) , (5)

where σ is surface tension, RG is the universal gas constant and T is tank temperature.
From [10], the particle critical radius is

rc =
2σVM

RGT ln (Cw/CEQ)
, (6)

where the particle grows if rp > rc and dissolves if rp < rc. Hence, rc acts as a criterion for
whether particles will dissolve or grow, and hence can be used to ascertain the effectiveness of
the particle settling process.

We consider three different temperature regimes, namely a constant temperature regime
and two time-dependent temperature configurations. The process’s current temperature
configuration is defined by two temperatures: the initial temperature of the acid solution as
it enters the tank, T0 and the final steady state temperature of the solution, T1. Whilst the
initial temperature is fixed, the final temperature is adjustable. We note that for particle growth,
we require T1 < T0. To model the present operating set-up, we assume that the acid solution
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changes rapidly from T0 to T1. To investigate the effect of cooling the acid solution at slower
rates than that of the current set-up, we define two monotonically decreasing time-dependent
temperature functions

TL =

{
T0 + (T1 − T0)t/τ if t ≤ τ
T1 if t ≥ τ , (7)

TE = T1 − (T1 − T0) erfc ( t
τ
) , (8)

where τ is a characteristic lead diffusion time scale associated with the constant temperature
problem and erfc is the complementary error function. For the proceeding analysis the C, L
and E subscripts denote terms pertaining to the constant, linear and error temperature models,
respectively. Functions (7) and (8) are designed such that at time t = 0 (when the acid solution
enters the tank) the temperature is equal to T0. Thereafter the temperature decreases with time
until the temperature is exactly equal to T1 at t = τ for (7) and approximately equal to T1 at
t = τ for (8).

3. Solution
Solving the first equation of (1) leads to

Cd(r) =
1

r(rp − rd)

(
rd(rp − r)Cw − CEQ exp

(
2σVM
RGTrp

)
rp(rd − r)

)
, (9)

where the concentration continuity condition in (2) and the solubility condition in (5) were used.
Introducing (9) into the second interface condition in (2) yields

dCw

dt
= − 3 rd rpD

r3w (rp − rd)

(
CEQ exp

(
2σVM
RGTrp

)
− Cw

)
, (10)

where VW ≡ 4πr3w/3 has been exploited. The particle radius equation is obtained by substituting
(9) into the Stefan condition (3) to give

drp
dt

=
DVMrd

rp (rp − rd)

(
CEQ exp

(
2σVM
RGTrp

)
− Cw

)
. (11)

4. Nondimensionalisation
4.1. Constant temperature model
Rewriting (10) and (11) in terms of the tank temperature T1 and exploiting δ = rd− rp leads to

dCw

dt
=

3D

δr3w
rp (rp + δ)

(
CEQ(T1) exp

(
2σVM
RGT1rp

)
− Cw

)
, (12)

drp
dt

= −DVm
δ

rp
rp + δ

(
CEQ(T1) exp

(
2σVM
RGT1rp

)
− Cw

)
. (13)

We define the dimensionless variables

rp = Rp r̂p , t = τ t̂ , Cw = C0 Ĉw , (14)

where the unknown time scale τ is found presently. Substituting (14) into (12) yields

dCw

dt
= τ

3DR2
p

δr3w
rp (rp + ∆)

(
HC exp

(
GC

rp

)
− Cw

)
, (15)
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where the dimensionless notation has been dropped immediately, ∆ = δ/Rp = O(1), HC ≡
exp (B(T1 − T0)) = O(1) and GC ≡ (2σVM )/(RGRpT1). The last of these parameters is typically
small for micron-sized particles. However, this is generally not the case for nanoparticles where
Rp is small, and thus GC = O(1). Hence, to keep the model general and applicable to particles
of any size, we do not exploit the magnitude of GC to make any reductions. We assume that
the radius of the well-mixed region is related to the particle radius length scale via rw = βRp

where β is a measure of the distance between particles in the tank. The value of β depends on
the diluteness of the solution where larger values of β yield larger well-mixed regions, and thus
less lead sulphate nuclei in the tank. The time scale is found by balancing the parameters in
(15) to give τ = (β3Rp δ)/(3D). Thus,

dCw

dt
= rp (rp + ∆)(HC exp

(
GC

rp

)
− Cw) . (16)

Introducing (14) into (13) leads to

drp
dt

= −FC
rp

rp + ∆

(
HC exp

(
GC

rp

)
− Cw

)
, (17)

where FC ≡ (β3VMC0)/3. The initial conditions for each of the discussed temperature regimes
are

Cw(0) = 1 , rp(0) = 1 . (18)

4.2. Time-dependent temperature models
Substituting the dimensionless time variable into the temperature functions (7) and (8) yields

TL =

{
T0 + (T1 − T0)t if t ≤ 1
T1 if t ≥ 1 ,

(19)

TE = T1 − (T1 − T0) erfc (t) , (20)

where again the dimensionless notation has been negelcted. For t ≤ 1 the dimensionless linear
temperature problem is

dCw

dt
= rp (rp + ∆)(HL(t) exp

(
GL

TL(t)rp

)
− Cw) , (21)

drp
dt

= −FC
rp

rp + ∆

(
HL(t) exp

(
GL

TL(t)rp

)
− Cw

)
, (22)

where GL ≡ (2σVM )/(RGRp) and HL(t) ≡ exp (B (T1 − T0)t). The initial conditions remain
unchanged from the constant temperature case. For t ≥ 1 the dimensionless linear problem is
just the constant temperature equations (16) and (17) with Cw(1) = Ct1 , rp(1) = Rt1 where
Ct1 and Rt1 are the lead concentration and the particle radius, respectively, at t = 1.

Similarly, the dimensionless error function temperature problem is

dCw

dt
= rp (rp + ∆)(HE(t) exp

(
GE

TE(t)rp

)
− Cw) , (23)

drp
dt

= −FC
rp

rp + ∆

(
HE(t) exp

(
GE

TE(t)rp

)
− Cw

)
, (24)

where GE ≡ GL and HE(t) ≡ exp (B(T1 − T0)erfc(t)).
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Table 1. Physical parameters used in simulations.

Meaning Notation Value Units

Acceleration due to gravity g 9.8 m s−2

Universal gas constant RG 8.31447 J K−1 mol−1

Lead sulphate density ρLS 6290 kg m−3

Lead sulphate molar volume VM 4.821× 10−5 m3 mol−1

Lead diffusion coefficient D 9.45× 10−10[13] m2 s−1

Acid solution kinematic viscosity νS 1.1× 10−5 m2 s−1

Acid solution dynamic viscosity µS 0.021 N s m−2

Initial acid solution velocity vp 10 m s−1

Average lead sulphate particle radius Rp 10−5 m
Surface energy σ 8.01× 10−2 [14] J m−2

Initial lead concentration C0 0.0128 mol m−3

Initial acid solution temperature T0 333 K
Final acid solution temperature T1 283 K
Equilibrium concentration fitting pa-
rameters

A,B 2× 10−6, 0.03 mol m−3, K−1

Width of diffusion region δ 10−4 m
Well mixed region parameter β 75 -

5. Results
In this section the results of the model are discussed. The equations for the fixed and time-
dependent temperature cases were simulated numerically in Matalab. Table 1 summarises
the main physical and dimensionless parameters of the problem. The temperature-dependent
equilibrium concentration CEQ(T ) = A exp (BT ) is obtained by fitting the function with the
experimental data of Crockford and Brawley [11, 12] for lead sulphate solubility over a range of
temperatures and sulphuric acid concentrations in aqueous solutions. The width of the diffusion
region around the particle is approximated via Prandtl’s boundary layer (see Appendix A).
The well mixed-region parameter β = ρw/Rp is obtained by considering the distance between
particles (i.e., solution diluteness) and the average particle radius. Based on experimental data
from our industrial collaborator we found β = 75.

Figure 2 shows numerical solutions for the dimensionless concentration and particle radius
subject to the fixed temperature (blue), linear temperature profile (green) and error function
temperature configurations. We note that the difference between the three temperature
configurations with respect to growth is negligible. The graphs demonstrate the correct
qualitative behaviour where the lead sulphate particle grows via the flux of lead atoms, and
hence the lead concentration in the well-mixed region decreases. Particle growth ends when a
dynamic equilibrium between the particle and the lead atoms in the acid solution is attained.
The simulations show that after 3 units of dimensionless time (or approximately 11.5 h) the
concentration in the well-mixed region reaches a steady state and the particle has achieved its
maximum size. Figure 2(b) also shows that there is a minimal increase of approximately 1.7%
in particle radius during growth. This increase can be attributed to the small dimensionless
parameter FC in the particle radius equation. The FC parameter depends on β where we note
that larger values of β indicate the presence of less lead sulphate particles and consequently,
less competition for lead atoms, which in turn leads to larger lead sulphate particles. However,
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the cubic dependence of the time scale τ on β implies that larger nuclei require much longer to
grow.
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Figure 2. Evolution of (a) well-mixed region lead concentration and (b) lead sulphate particle
radius subject to constant temperature (blue), error function temperature (red) and linear
temperature function(green).

The critical radius evolution for each of the temperature configurations is shown in Figure 3.
The curves divide regions which support particle growth (above curves) and particle dissolution
(below curves). Initially the time-dependent temperature configurations have higher critical
radii than that of the constant temperature regime. Thus, the former temperature set-ups
are preferable as it is more difficult for new particles to precipitate out of solution due to the
higher critical energy barrier. Unlike the other two curves, the constant temperature curve is
monotonically increasing. For the constant temperature case when the acid solution enters the
tanks its temperature decreases rapidly. This causes the lead sulphate solubility to decrease
dramatically and thus the initial particle critical radius at t = 0 drops instantaneously to its
minimum value. On the other hand, for the time-dependent temperature cases, the acid solution
is subject to a slower cooling regime. Hence, the lead sulphate solubility limit decreases at a
slower rate and reaches it minimum after approximately 0.7 units of dimensionless time (or 2.7 h).
As the settling process proceeds to the point and beyond where the constant temperature curve
intersects with the other two curves, we can see that the constant temperature configuration is
an improvement on the other two temperature regimes.

6. Conclusion
In this paper we investigated the effect that temperature has on a lead sulphate settling process
from the glassware manufacturing industry. A similar strategy to that proposed by Liger-
Belair et al. [9] for modelling bubble nucleation from cellulose fibers in carbonated beverages
was applied. The spherical region around the particle was divided into two separate regions
each with its own characteristic lead atom diffusion regime. Specifically, the relatively small
boundary layer region in contact with the particle was characterised by position-dependent
diffusion and the larger (fast diffusion), far field well-mixed region was typified by time-dependent
lead diffusion (slow diffusion). The final model consisted of two coupled nonlinear ordinary
differential equations for the particle radius and the far-field concentration.
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Figure 3. Evolution of dimensionless critical radius subject to constant temperature (blue),
error function temperature (red) and linear temperature function (green).

Three temperature configurations were considered. The numerical simulations demonstrated
minor particle growth. Furthermore, the time required for the particle to reach its maximum
size was of the order hours. From an operating perspective, the acid solution should be allowed
to sit overnight to maximise lead sulphate extraction. The small lead diffusion coefficient is one
reason for the length in time required to achieve maximum particle growth. The introduction
of a stirring mechanism, at least of the upper solution layers, could speed up the lead diffusion
process.

An expression for the particle critical radius was also formulated. The time-dependent
temperature configurations were shown to improve on the constant temperature case near the
start of the process where particles had more difficulty overcoming the critical energy barrier
associated with the former temperature regimes compared to the latter. However, as settling
continues the performance of the constant temperature configuration was shown to be the best
of the three configurations with respect to the dissolution of smaller particles and the growth of
existing crystals.
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Appendix A. Boundary layer width
Appendix A.1. Introduction
In this section we quantify the width of the diffusion region, δ around the lead sulphate particle.
In Appendix A.2 we apply Prandtl’s boundary theory to obtain an approximate expression for δ.
Prandtl’s approximation depends on the velocities of the acid solution and the particle, both of
which are random in nature. Thus, in Appendix A.3 we formulate a set of stochastic differential
equations for their velocities. In Appendix A.4 we derive a Fokker-Planck equation for the joint
probability density function for the root mean square particle-solution relative velocity, which
is then used to find δ.
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Appendix A.2. Boundary layer approximation
We approximate the width of the particle diffusion region via Prandtl’s boundary layer theory
[15], which states δ ∼

√
(ν L)/U where ν is the liquid kinematic viscosity, L is a characteristic

length scale associated with the body which the liquid is flowing past and U is a liquid velocity
scale. Thus, for the current study

δ ∼
√
νSRp

u− v
, (A.1)

where νS is the acid solution dynamic viscosity and u, v are the velocities of the acid solution and
particle, respectively. Assuming that the particle has a velocity component only in the vertical
direction and negligible buoyancy, then via Newton’s second law of motion, the one-dimensional
equation for motion of a single spherical particle is

Mp
dv

dt
= −Mp g − FD , (A.2)

where g is gravity and Mp is particle mass. The drag force, FD, depends on the acid solution
flow regime, which in turn itself is charecterised by the magnitude of the Reynolds number
Re = ((U − V )Rp)/νS . Using the parameter values in Table 1 and assuming that the difference
between the acid solution and particle velocity scales U, V is O(1) or less, then Re is presumed
to be sufficiently small such that Stokes’ law for the drag force is applicable. Thus, from [16]

FD = −6π µS Rp (v − u) , (A.3)

where µS is the solution kinematic viscosity. Upon substituting (A.3) into (A.2) we obtain

dv

dt
= − g − 1

τ1
(v − u) , (A.4)

where τ1 = Mp/(6πµSRp)� 1 s is a measure of the response time of the particle to interactions
with the acid solution.

Appendix A.3. Acid solution velocity
The random motion of the acid velocity, and thus the interactions of the acid solution with
the particle, is modelled via a time-dependent stochastic function. Specifically, we assume the
solution velocity can be represented by a Gaussian stochastic function u(t) with zero mean,
variance 〈u2 〉 = v2p and autocorrelation function

R(δt) = 〈u(t)u(t+ δt) 〉 = v2p exp (−δt/τ2) , (A.5)

where we presume that the root mean squared acid solution velocity is equal to the initial
velocity of the acid solution vp (as imparted by the pump), δt (> 0) is the time lag and τ2 is the
correlation time [17]. For the current system τ2 = d/vp where vp ≈ 10 m s−1 is the acid solution
velocity due to the pump and d ≡

√
νS tres ≈ 0.12 m is a length scale related to the size of the

turbulent eddies in the solution. The time tres ≈ 1 hr corresponds to the residence time of the
acid solution in the settlement tank and thus τ2 ≈ 0.03 s.

To derive the stochastic differential equation (SDE) for u we begin by defining the realisation
of the acid solution velocity at time t+ δt in terms of a deterministic and a completely random
component. The deterministic part is dependent on the realisation of the acid solution at t and
the time lag δt. Thus,

u(t+ δt) = g(δt)u(t) + σ ξ(t) , (A.6)
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where g(δt) is an unknown function and σ is an unknown constant known as the average velocity
per square-root time of the random fluctuations. The ξ(t) term in (A.6) represents a completely
random white noise process with zero mean. The autocorrelation function associated with ξ(t) is
R(t) = α2δ(t) where α2 is some positive constant and δ(t) is the standard Dirac delta function.
We note that ξ(t) is the time derivative of a Wiener process W (t) such that

ξ(t) =
dW

dt
. (A.7)

An expression for g(δt) is obtained by multiplying u(t) by u(t + δt) and averaging over the
ensemble of realisations to give

〈u(t)u(t+ δt) 〉 = 〈u(t) (g u(t) + σξ(t)) 〉 = g v2p . (A.8)

Comparing (A.5) with (A.8) it follows that g(δt) = 1 − δt/τ2 + O(δt2) for t � 1. Expanding
(A.6) for small δt, diving through by δt and multiplying by dt yields

du = − u
τ2

dt + σ′ dW , (A.9)

where σ′ = σ/δt and (A.7) has been exploited. To find σ′ we first obtain 〈u2〉 via Itô’s lemma
[17], which states that for a SDE of the form

dx = a(x, t) dt + b(x, t) dW , (A.10)

and any twice differentiable function f(x, t) of two real variables x and t, then

df(x, t) = ( ∂f
∂t

+ a(x, t)
∂f

∂x
+

1

2
b(x, t)2

∂2f

∂x2
) dt + b(x, t)

∂f

∂x
dW . (A.11)

Hence, defining the new variable f(u) = u2 and applying Itô’s lemma to (A.9) yields

d(u2) = (− 2u2

τ2
+ σ′ 2) dt+ 2uσ′ dW . (A.12)

An expression for σ′ is found by considering a general mean-reverting stochastic process [18]

dS = a (L − S) dt + σ dW , (A.13)

where a is the rate of mean-reverting. The solution to (A.13) tends to the equilibrium value, L
with the stochastic term causing S to oscillate around L. Hence, (A.12) can be viewed as an
equation for a mean-reverting stochastic process with S = −(2u2)/τ2 and L = σ′ 2, respectively.
Thus, comparing terms in (A.12) yields σ′2 = (2u2)/τ2 or equivalently

σ′ = vp

√
2

τ2
, (A.14)

where we have exploited the fact that the magnitude of u2 is O(v2p). Introducing (A.14) into
(A.9) yields the SDE

du = − u
τ2

dt + vp

√
2

τ2
dW . (A.15)

We define the dimensionless variables

v = vp v̂ − τ1g , u = vpû , t = τ2t̂ , W =

√
τ2
2
Ŵ , (A.16)

which upon substitution into (A.4) and (A.15) yields

dv = α (u − v) dt , du = −udt + dW , (A.17)

where the dimensionless notation has been dropped and λ = τ2/τ1.
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Appendix A.4. Fokker-Planck equation and solution
We now formulate the Fokker-Planck associated with the joint probability density function of u
and v. An arbitrary system of two SDEs in x1(t) and x2(t) is given by [19]

dx1
dt

= f1(x1, x2) + g1(x1, x2)η1(t) ,
dx2
dt

= f2(x1, x2) + g2(x1, x2)η2(t) , (A.18)

where x2(t) has autocorrelation < x2(t)x2(t
′) >= κ exp (|tt′|/τ) and η1(t), η2(t) are random force

terms. The related two-dimensional Fokker-Planck equation for the joint probability density
function of x1(t) and x2(t), P , is

∂P

∂t
= − ∂

∂x1
(f1 P)− ∂

∂x2
(f2P)+ κ

∂

∂x1
(g1 ∂

∂x1
(g1P ))+ κ

∂

∂x2
(g2 ∂

∂x2
(g2P )). (A.19)

Hence, using x1 = v, x2 = u, f1 = λ(u − v), f2 = −u, g1 = 0 and g2 = 1, the Fokker-Planck
equation associated with (A.17) is

∂

∂u
(uf) + λ

∂

∂v
((v − u)f) +

∂2f

∂u2
= 0 . (A.20)

where f is the stationary joint probability density function of u and v. If the first term in (A.20)
is neglected, the resulting reduced equation has as its solution g(u) = exp (−u2/2). Thus, we
assume that the full solution to (A.20) can be written as f(u, v) = g(u)h(u, v). The function
h(u, v) is determined via heuristic physical considerations regarding the nature of f(u, v), and
in particular the effect of the parameter λ on the relationship between u and v in (A.17).
Firstly, inspection of the second SDE in (A.17) suggests that if λ� 0, then the particle velocity
v tends towards the acid solution velocity u. Thus, in the limit as λ → ∞ there is perfect
correlation between u and v. On the other hand, as λ → 0, the autocorrelation between u and
v vanishes and v oscillates around its mean value. Assuming that the function h is exponential
in nature, for intermediary values of λ we have h(u, v) = exp (−B[v −Au]2) where A and B
are unknown constants. Based on the above definition of f(u, v), the function takes the form
f(u, v) = exp (−u2/2−B[v −Au]2). The constants A and B are found by substituting this
expression for f into the Fokker-Planck equation and matching like coefficients for u and v to
obtain

f(u, v) = exp(− u2

2
− λ

2
[u− λ+ 1

λ
v]

2

) . (A.21)

Finally, we average over the joint probability distribution of u and v to obtain the mean
square particle relative velocity

〈(u− v)2〉 =

∫∞
−∞

∫∞
−∞(v − u)2f(u, v) dudv∫∞
−∞

∫∞
−∞ f(u, v) dudv

=
1

λ+ 1
, (A.22)

which can be rewritten in dimensional terms via (A.16) and then used in (A.1).
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