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Abstract. Spectral line shapes can be described by the transport-relaxation equation (TRE).
When ab initio collisional operator is incorporated, the TRE needs to be solved numericaly. We
report a pure numerical problems encountered during tests of the iterative approach to solving
the TRE. As a reference we have used Voigt profile, which can be easily calculated analytically
with error function, as well as numerically by solving TRE with simple collisional operator.
Our studies lead us to the conclusions about impact of numerical precion and matrix operators
dimensions on the accuracy of the calculations.

1. Introduction
Modern high resolution spectroscopy provides experimental data with extremely high singnal-
to-noise ratio [1, 2]. The theoretical analysis of these data should come with an accuracy at
comparable level. The realistic theory must take into account many physical aspects and in
ideal case be based on interaction potentials obtained with ab initio calculations [4, 3]. It is
possible to find exact analytical formula describing spectral line shape. However, in general this
is complicated or even impossible to solve analytically. In that case there is a need to find a
stable and reliable numerical method providing a solution with the smallest posibble errors in a
finite number of steps. The standard approach [5, 6] converts the physical problem to the set of
linear equations which can be easly solved for high and middle pressures, where collsional width
is larger or comparable to Doppler one. It falls down in cases of low pressures [7], where the
Doppler effect is dominant. Iterative method of solving TRE [7] enables calculations for a wide
range of pressures, including zero-pressure limit.

2. Iterative approach to stationary solution of transport-relaxation equation
According to [6], it is convinient to write TRE in as

1 = −i(ω − ω0 − ~k · ~v)h(ω,~v)− Ŝfh(ω,~v), (1)

where ω0 - ω is detuning from the resonant frequency, ~k is the wave wector, ~v is the absorber
velocity and Ŝf is the collisional operator describing changes of both internal and translational
state under collisions. The function h(ω,~v) can be used to calculate the line-shape profile as

I(ω) =
1

π
Re

∫
d3~v fm(~v)h(ω,~v), (2)
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where fm(~v) is the Maxwellian velocity distribution. In the case of low pressures, where the
usual solution of TRE fails, there is a need to modify Eq. (1) to ensure that the iterative process
coverges. This can be done by introduction of nonphysical parameter Γnum to Eq. (1)

1 = [Γnum − i(ω − ω0 − ~k · ~v)h(ω,~v)]− (Γnum + Ŝf )h(ω,~v). (3)

After some mathematical operations and decomposition of operators in finite-dimensional Burnet
basis [8, 9], iterative form of the solution of TRE can be written as [7]

cn+1(ω) = a(ω) + A(ω) ·B · cn(ω), (4)

where cn is a vector of solutions in n-th iterative step, starting from c0[0] = 1 and c0[6= 0] = 0,
A is a complex matrix depending on detuning from resonance and Doppler shift, B is a ma-
trix describing collisions and relaxation process (matrix form of collisional operator decom-
posed in Burnett basis) and a is a first column of A matrix. The dimensions of matrices are
(Nmax ·Lmax)× (Nmax ·Lmax) corresponding to the dimensions of Burnet function basis used for
decompositon of the operators. These functions are enumerated by a pair of indexes n, l such
that n = 0, · · · , Nmax and l = 0, · · · , Lmax. Further explanation of decomposition and forms of
matrix operators can be found in [7].

3. Results
We have performed tests of the iterative method of solving transport-relaxation equation for
Voigt profile, which has a simple analytical formula given by Faddeeva function [10]. In this

case, the collisional operator Ŝf acts as a scalar quantity equal to −Γ, where Γ is a collisional half
width at half maximum (HWHM) of the spectral line. Doppler effect is treated independently
of collisional operator and taken into account in A(ω).

In our calculations the ratio between collisional and Doppler line width was equal to Γ
ωD

= 1.

We have defined the iterative coverence as |cn[0]− cn−1[0]| for different dimensions of operators
matrices. We have used a single numerical precision binary32 defined by IEEE 754-2008
standard [11].

As shown in Fig. 1, numerical accuracy of method depends on matrices’ dimensions. For small
dimensions of matrices, the convergence criterion leads to the proper solution. Further iterations
do not destroy the agreement with analytical form of the used profile. For the optimal base
dimension in single precision calculations, cnovergence criterion does not lead to the minimum
of the difference between analytical and numerical solution. Interesting fact is that this difference
stabilizes at the same level during further iterations. In case of too large base, range between
minimum and maximum value in A matrix can not be covered by representation of floating point
values in the used arithmetic. This causes the destabilization of iterative process and leads to
a wrong solution. It means that it is not possible to arbitrarily extend matrixces’ dimensions
using the same numerical precision. This effect is caused by accumulation of numerical erros
and finite representation of significand in floating point arithmetics.

4. Conclusions
We have performed simple test to check why extending of the dimensions of matrix operators
does not lead to the better convergence of the calculations. The main problem is numerical
precision which is not able to handle range of the values of perturbative corrections. There
is only one remedy for that problem - use of larger precision, which could encode value with
more significant digits. In this paper we have formed the research problem such that iterative
approach to solving TRE for spectral line shapes calculations needs to put more attention on
numerical precision and values of nonphysical parameters.
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Figure 1. Evolution of the iterative process as a function of the number of steps. Solid lines
indicate iterative process covergence defined as |cn[0]− cn−1[0]| and dashed lines show difference
between analytical solution and value obtained by iterative method in n-th step. Colors refer to
Lmax = Nmax dimensions as following: red - 4, blue - 6, black - 7, yellow - 8.
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