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Abstract. A submodule of a Z-module determines a coloring of the module where each coset
of the submodule is associated to a unique color. Given a submodule coloring of a Z-module,
the group formed by the symmetries of the module that induces a permutation of colors is
referred to as the color group of the coloring. In this contribution, a method to solve for the
color groups of colorings of N -planar modules where N = 4 and N = 6 are given. Examples of
colorings of rectangular lattices and of the vertices of the Ammann-Beenker tiling are given to
exhibit how these methods may be extended to the general case.

1. Introduction
Colorings and color symmetries of crystals and quasicrystals can be considered a classical topic
in crystallography (see [1, 2] and references therein). Most of the literature on colorings of
lattices or Z-modules put emphasis on Bravais colorings (cf. [3, 4, 5, 6]). Nevertheless, studies
have been made on general colorings of lattices or Z-modules such as in [7, 8, 9]. In this
contribution, we give some results on how to identify the color groups of sublattice colorings of
lattices or Z-modules, and give examples to illustrate them. In particular, we give nonperfect
non-Bravais colorings of the rectangular lattice and the vertices of the Ammann-Beenker tiling.

By a Z-module M of rank r and dimension d, we mean a subset of Rd that is spanned by r
vectors in Rd that are linearly independent over Z but span Rd. As a group, M is isomorphic
to the free abelian group of rank r. A Z-module Γ of rank r = d is called a lattice. At the
outset, we shall talk primarily of lattices in dimension d, but results do hold for Z-modules.

Let Γ1 be a lattice in Rd. A coloring of Γ1 by m colors is an onto mapping c : Γ1 → C,
where C is the set of m colors used in the coloring. Of particular interest are colorings of Γ1

by m colors wherein two points of Γ1 are assigned the same color if and only if they belong to
the same coset of a sublattice Γ2 of index m in Γ1. Such a coloring shall be referred to as a
coloring of Γ1 determined by its sublattice Γ2. Here, the set of colors C can be identified with
the quotient group Γ1/Γ2 so that the color mapping c is simply the canonical projection of Γ1

onto Γ1/Γ2 with kernel Γ2. Hence, we may take C = {c0 = 0, c1, . . . , cm−1} to be a complete
set of coset representatives of Γ2 in Γ1, and say that the coset cj + Γ2 has color cj .

Denote by G the symmetry group of Γ1 and fix a sublattice coloring c of Γ1. The point group
of G, P (G), consists of all symmetries in G that fix the origin. A symmetry in G is called a
color symmetry of the coloring if all and only those points having the same color are mapped
by the symmetry to a fixed color. The set H of all color symmetries of the coloring, that is,
H = {h ∈ G : ∃σh ∈ SC such that ∀ ` ∈ Γ1, c(h(`)) = σh(c(`))}, where SC is the group of
permutations on the set of colors C, forms a group called the color group or color symmetry
group of the coloring. The mapping P : H → SC with h 7→ σh defines a group homomorphism,
and thus the group H acts on C. A coloring where G = H is referred to as a perfect coloring.
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The color groups of sublattice colorings of the square and hexagonal lattices were computed
in [9]. They were obtained by representing sublattices of the square and hexagonal lattices as
upper triangular matrices and expressing elements of the point groups of the lattices as matrices
relative to the standard basis of R2. On the other hand, colorings of the square and hexagonal
lattices determined by their square and hexagonal sublattices, respectively, (also referred to as
Bravais colorings) were considered in [6]. In particular, the color groups were computed using
number-theoretic properties of the ring of Gaussian and Eisenstein integers.

2. Some general results
Consider a coloring c of the lattice Γ1 in Rd determined by a sublattice Γ2 of index m in Γ1. The
next theorem, which belongs to the folklore and was proven for specific cases (cf. [9, Theorems 1
and 2] and [6, Theorem 2]), gives us a method to compute for the color group H of c.

Theorem 1. Let G be the symmetry group of Γ1, where P (G) and T (G) denote the point group
and translation subgroup of G, respectively. Then T (G) is a subgroup of the color group H. In
addition, an element g ∈ P (G) is a color symmetry of c if and only if g leaves Γ2 invariant,
that is, gΓ2 = Γ2.

Proof. Let g ∈ T (G) be the translation by ` ∈ Γ1. For any ci + Γ2 ∈ Γ1/Γ2, g(ci + Γ2) =
(`+ ci) + Γ2 = cj + Γ2 for some 0 ≤ j ≤ m− 1. Hence, g sends color ci to color cj , and g ∈ H.

Suppose g ∈ P (G) is a color symmetry of c. Then g sends color c0 to some color ci,
0 ≤ i ≤ m− 1, that is, gΓ2 = ci + Γ2. Since 0 ∈ Γ2 and g(0) = 0, then gΓ2 = Γ2. In the other
direction, suppose gΓ2 = Γ2. Then for every coset ci + Γ2, g(ci + Γ2) = gci + gΓ2 = cj + Γ2 for
some 0 ≤ j ≤ m− 1, since g ∈ P (G). Thus, g ∈ H.

It follows from above that every color symmetry of c fixes color c0. Note however that
Theorem 1 does not imply that the color group of a sublattice coloring and the symmetry group
of the sublattice are the same.

The following corollary relates color groups of colorings determined by similar sublattices.

Corollary 2. Let Γ3 = αRΓ2 where α ∈ R+ and R ∈ O(d,R). Then P (H ′) = R[P (H)]R−1

where H ′ is the color group of the coloring of Γ1 determined by Γ3.

Proof. Given g ∈ P (G), gΓ3 = Γ3 ⇔ gRΓ2 = RΓ2 ⇔ R−1gRΓ2 = Γ2. The claim now follows
from Theorem 1.

3. Color groups of sublattice colorings of planar lattices
Here, we view planar lattices as discrete subsets of C. In this setting, rotations about the origin
by θ in the counterclockwise direction correspond to multiplication by the complex number eiθ.
We denote such rotations by Reiθ . Also, the reflection Tr along the real axis is associated to
complex conjugation.

Suppose Γ2 is a sublattice of the planar lattice Γ1. Then R(−1)Γ2 = −Γ2 = Γ2. By applying
Theorem 1, we obtain the following result.

Proposition 3. The 180◦-rotation about the origin is a color symmetry of a sublattice coloring
of any planar lattice.

3.1. Sublattice Colorings of the Square and Hexagonal Lattices
We identify the square lattice Γ1 with the ring of Gaussian integers Z[i]. The symmetry group G
of Γ1 is of type p4m (or ∗442 in orbifold notation) and it is symmorphic, that is G = P (G)oT (G)
where P (G) = {R±1, R±i} o 〈Tr〉 and T (G) is the group of translations of G. Given linearly
independent vectors u, v ∈ Γ1, let Γ2 = 〈u, v〉

Z
, that is, the sublattice of Γ1 generated by u

and v. Applying Theorem 1 and Proposition 3 in this setting, it suffices to check whether Ri,
Tr, and RiTr fix the sublattice Γ2 in order to identify the color group of the coloring of Z[i]
determined by Γ2. One obtains the following results.

1. Γ2 is invariant under Ri if and only if Im(uv) divides N(u), N(v), and Re(uv).
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2. Γ2 is invariant under Tr if and only if Im(uv) divides Im(u2), Im(v2), and Im(uv).

3. Γ2 is invariant under RiTr if and only if Im(uv) divides Re(u2), Re(v2), and Re(uv).

These observations yield the following theorem.

Theorem 4. Let Γ1 = Z[i] and Γ2 = 〈u, v〉
Z
⊆ Γ1. Then the color group of the coloring of Γ1

determined by Γ2 is of type

(a) p4m if Im(uv) divides N(u), N(v), Re(uv), u2, v2, and uv.

(b) p4 if Im(uv) divides N(u), N(v), and Re(uv), and does not divide any of the following:
Im(u2), Im(v2), and Im(uv).

(c) pmm if Im(uv) divides Im(u2), Im(v2), and Im(uv), and does not divide any of the following:
N(u), N(v), and Re(uv).

(d) cmm if Im(uv) divides Re(u2), Re(v2), and Re(uv), and does not divide any of the following:
N(u), N(v), and Re(uv).

(e) p2 if none of the above criteria is satisfied.

If we write Γ2 = 〈a, b+ ci〉
Z

, where a, b, c ∈ Z, then one readily obtains the results in [9] by
applying Theorem 4. Because of Corollary 2, we may even assume that a, b, and c are coprime.

Analogous results also hold for colorings of the hexagonal lattice. We associate the hexagonal
lattice to the ring of Eisenstein integers Z[ξ], where ξ = e2πi/3. For the following result, given
u = a+ bξ ∈ Z[ξ], we use the notation Re(u) := a and Im(u) := b.

Theorem 5. Let Γ1 = Z[ξ] and Γ2 = 〈u, v〉
Z
⊆ Γ1. Then the color group of the coloring of Γ1

determined by Γ2 is of type

(a) p6m if Im(uv) divides N(u), N(v), Re(uv), u2, v2, and uv.

(b) p6 if Im(uv) divides N(u), N(v), and Re(uv), and does not divide any of the following:
Im(u2), Im(v2), and Im(uv).

(c) cmm if Im(uv) divides Im(u2), Im(v2), and Im(uv), and does not divide any of the
following: N(u), N(v), and Re(uv).

(d) cmm if Im(uv) divides Re(u2), Re(v2), and Re(uv), and does not divide any of the
following: N(u), N(v), and Re(uv).

(e) cmm if Im(uv) divides Re(u2) − Im(u2), Re(v2) − Im(v2), and Re(uv) − Im(uv), and
does not divide any of the following: N(u), N(v), and Re(uv).

(f ) p2 if none of the above criteria is satisfied.

3.2. Example of colorings of a rectangular lattice
Let Γ1 be the rectangular lattice given by Γ1 = 〈1, 2i〉Z. For Figure 1(a), Γ2 = 〈3, 2i〉Z. By
using the above results to check for the invariance of Γ2 under Tr, the color group of the coloring
of Γ1 determined by Γ2 is of type pmm. For Figure 1(b), Γ3 = 〈4, 1 + 2i〉Z. Now, by applying
the results above, the color group of the coloring of Γ1 determined by Γ3 is of type p2.

(a) (b)

Figure 1. Colorings of Γ1 = 〈1, 2i〉Z determined by (a) Γ2 = 〈3, 2i〉Z and (b) Γ3 = 〈4, 1 + 2i〉Z.
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4. Nonperfect colorings of the Ammann-Beenker tiling
The techniques that we have developed in the previous sections may also be used to obtain
submodule colorings of Z-modules. We illustrate this by considering the planar Z-module
M1 = Z[ξ] of rank 4 with basis

{
1, ξ, ξ2, ξ3

}
where ξ = eπi/4. The symmetry group of Z[ξ] is

G = 〈a, b〉 ∼= D8, where a and b correspond to the 45◦-rotation in the counterclockwise direction
about the origin and reflection along the real axis, respectively. These submodule colorings
induce colorings of the vertices of the eight-fold symmetric Ammann-Beenker tiling that are not
necessarily perfect.

Given a submodule M2 of M1, we identify the color group of the coloring determined by
M2 by checking the invariance of M2 under Rξ, Rξ2 , Rξ3 , and Tr. Note that M2 is always
fixed by the 180◦-rotation about the origin.

As an illustration, to obtain a coloring of the Ammann-Beenker tiling with color group
isomorphic to D4, we choose the basis elements of M2 such that M2 is invariant under Rξ2

and Tr but not under Rξ. For example, if M2 = 〈1, 2ξ, ξ2, 2ξ3〉 then it can be verified that
M2 satisfies the given conditions. Thus, the color group of the coloring induced by M2 is〈
a2, b

〉 ∼= D4 (see Figure 2(a)). The submoduleM3 =
〈
1, 2ξ, 2ξ2, ξ3

〉
is invariant only under the

rotation by 180◦. The color group of the coloring induced byM3 is
〈
a4
〉 ∼= Z2 (see Figure 2(b)).

(a) (b)

Figure 2. Colorings of the Ammann-Beenker tiling induced by (a) M2 =
〈
1, 2ξ, ξ2, 2ξ3

〉
and

(b) M3 =
〈
1, 2ξ, 2ξ2, ξ3

〉
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