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Abstract. The statistical approach was in constant development since it was first applied to 

calculate the structure factor for Fibonacci chain being the model of 1D quasicrystal. Its 

pertinence was investigated throughout years resulting in fully developed mathematical 

formalism finally ready to be exploited in its full potential. First serving as an alternative to 

higher-dimensional description of quasicrystals it proved to be even more general. Structures 

without nD representation can be investigated within statistical approach as well. Unified 

description of the variety of structures is possible based on the distribution function constructed 

upon the reference lattice concept. Furthermore, the distribution is sensitive to disturbances in 

the structure and reflects them by deformation occurring in the shape of the distribution. 

Therefore, disorder such as phononic or even phasonic, out of reach for nD approach, can be 

represented and incorporated in the structural analysis. In the paper we briefly introduce the 

concept standing behind the statistical approach and discuss the most important achievements 

of the approach.  

1.  Introduction – foundations of the statistical approach 

The essential mathematical object considered in the statistical approach is the distribution function 

constructed for the structure of periodic or aperiodic crystals [1, 2]. It is the distribution of atomic 

positions calculated against nodes of the periodic reference lattice. The reference lattice constant    is 

related to the length   of the scattering  vector   according to equation         . The scattering 

vector   can be arbitrarily selected from the diffraction pattern of the structure and, in fact, does not 

need to be the position of the Bragg peak. The peak profile can be probed within this method as well 

[3]. The distribution constructed for scattering vector   will allow to calculate the structure factor for 

all scattering vectors equal to   , where      . The coordinate   in the reference lattice of the jth atom 

is denoted as    and is calculated using the coordinate   : 

 

               (1) 

 

The coordinate    is calculated in the direct space along the direction given by vector  . Equation (1) 

simply says that each new coordinate is achieved by projection of the atomic coordinate onto reference 

lattice and the distance to the nearest node of the lattice becomes new coordinate. The above 

mentioned procedure is mathematically realized by modulo operation. All coordinates    are limited to 

the region [    ⁄     ⁄ ) or equivalently [    ) depending on the taken definition. Both regions 
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are equally correct in terms of the structure factor calculation. The difference is reflected in the global 

phase, which is insignificant. Having obtained coordinates   we can construct the distribution  ( ), 

which gains probabilistic interpretation after normalization. If the considered crystal structure exhibits 

multiple characteristic length-scales, e.g. in the case of modulated structures, the construction of the 

distribution function can be generalized. In case of two length-scales-structure each scattering vector   

can be expanded as the sum of the basic vector    and the modulation vector   :          , 

       . The length    of the modulation vector is related to the length    of the basic vector by 

scaling relation, such that scaling       ⁄ . By analogy, we introduce reference lattice with lattice 

constant    related to the length of the modulation vector in the same manner, as in case of the basic 

vector. Coordinates respective to the second lattice are denoted as   and are obtained in the same 

procedure as   coordinates. Coordinates   are limited to  [    ⁄     ⁄ ) or [    ). The complete 

information about the structure with two length-scales is stored in the two-parameter-distribution 

 (   )  Generalization of the statistical distribution for rank n quasicrystal would require n parameter-

dependent-distribution but it must be emphasized that such generalization is not necessary and the 

distribution dependent on one parameter   is sufficient to calculate the structure factor for the 

scattering vector  . The distribution  (   ) is a fundamental definition of Average Unit Cell (AUC) 

but in most applications, as it was mentioned, it is enough to use marginal distribution only. It is 

straight-forwardly related to the scaling property of the basic vector and the modulation vector. The 

scaling relation is also present in mutual dependence of   and  . The existence of relation  ( ) 

imposes the possible simplification of the probabilistic structure description. The distribution is always 

non-zero only in region realized by  ( ) function which is a set of curves or single curve in simple 

case. What we refer to as AUC is a marginal distribution  ( ). A full diffraction pattern can be 

calculated form  ( ) distribution without its general counterpart. However, if multi-scaling 

description of the AUC is used such simplification is valid for non-disordered structures only as long 

as relation  ( ) is preserved. Phononic disorder affects the scaling, therefore full distribution is 

required [4]. The structure factor for 1D structure with two length-scales in kinematical theory is the 

sum of plain waves scattered over atoms in the structure. It can be written in statistical formalism as: 

 

 

 (       )  ∑     [             ]

 

   

  (2) 

 

where scattering vector          ,         and    is the atomic form factor. We can use lengths 

of vectors because coordinates   and   are calculated along those vectors. Taking into account that 

coordinates    and    form dense distribution  (   ) the formula (2) can be rewritten as: 

 

 
 (       )  ∫  (   )   [           ]

   

      (3) 

 

Further simplification is possible due to scaling relation  ( ): 

 

 
 (       )  ∫  (   )   [           ( )]

   

    

 ∫  ( )   [           ( )]  
   

  

(4) 

 

Formula (4) is general for any system with scaling relation and two length-scales. Even further 

simplification can be achieved when specific form of  ( ) relation is applied, e.g. linear function in 
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case of ordinary quasicrystals. The most popular scaling for known quasicrystals is   – the golden 

mean ratio. Respective scaling relation  ( ) is linear with coefficient equal to    . 

 

The second most important object in the statistical approach after distribution function together with 

 ( ) relation is the envelope function [2]. The envelope function is calculated as the Fourier 

Transform of the statistical distribution. Its applicability is particularly important in the case of 

quasicrystals. The diffraction pattern of quasicrystals is aperiodic but peaks can be grouped into sets. 

Peaks with the same m value can by connected with a single curve called envelope (Figure 1). In 

general, the shape of the envelope function can be complex. The curves occur periodically in the 

reciprocal space with the periodicity    depending on the scaling. The set of envelope functions form 

the equivalence class and all peaks can be represented by only one envelope function in the space of 

the so-called reduced vector         [2]. It is very convenient to use the envelope function 

representation of the diffraction pattern as numerous effects influence the shape of the envelope 

function. For instance, phasons are easily recognizable by reshaping the envelope function [5]. 

 

  

Figure 1. (left) The structure factor  ( ) calculated for the Fibonacci chain using formula (4) with first 3 envelopes 

          marked with different line types (solid, dashed, dotted respectively). Different marker types were used to 

distinguish peaks with respect to   value; (right) The diffraction pattern of the Fibonacci chain calculated as squared 

structure factor with first 3 envelopes marked (notation from the left figure used). Peaks are distributed periodically 

within an envelope (period    
    

    
      [    ]) and envelopes are deployed with periodicity    √    

     [    ]. 

2.  The refinement of quasicrystals 

The refinement of quasicrystalline structure is done based on the rigid body model where we take the 

advantage of aperiodic tilings. Also the cluster description of atomic arrangement is possible and the 

statistical model could be derived for clusters as well [6]. Tilings have this advantage over clusters that 

neighboring tiles do not overlap and number of prototiles is rather low. In the tiling models we assume 

identical decoration for each tile of the same type independently on the orientation. In general form, 

the geometric structure factor for tiling model can be written as follows: 

 

 

 ( )  ∑∑ ( )   ∑        (         )

 ( )

   

  

   

  

   

  (5) 
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where  ( )    is the Fourier Transform of this part of the distribution  ( ) which is related to the 

reference node of the prototile  . Number of prototiles is equal to   . Each prototile is in the 

orientation   and total number of orientations is   . Atomic decoration is considered in the last sum, 

where    is the scattering factor of lth atom and    describes the fraction of atom inside a prototile as 

atoms can be shared by more prototiles. Number N of atoms in a prototile is dependent on the type of 

prototile, what is denoted as  ( ). The position of atom l inside the prototile p in the orientation o is 

given by       . The key part of the calculation is to determine the distribution of prototile’s reference 

vertex in the reference lattice in the purpose of reducing the complexity of calculations. The complete 

structure factor was derived for decagonal quasicrystals modeled with the use of Penrose Tiling (PT) 

[7] and icosahedral quasicrystals modeled with Ammann-Kramer-Neri Tiling known as Ammann 

Tiling (AT) [8]. In further parts of the paper prototiles are called structure units.  

2.1 The Penrose Tiling 

The Penrose Tiling covers 2D space with the use of two structure units: thick and thin rhombuses [9]. 

Each rhombus is spanned by two vectors associated with pentagonal direct space vector basis and 

occurs in five different orientations. If the AUC is constructed according to procedure given in section 

1 the distribution for vertex decoration PT is uniform and non-zero only in four pentagonal regions 

[7]. It is not a coincidence that atomic surface of the PT is also composed of four pentagons. In fact, 

AUC in case of quasicrystals can be considered as oblique projection of atomic surface onto the 

physical space [7]. In order to express each atomic position in relation to one reference vertex of the 

rhombus its distribution in the AUC must be found. The Fourier Transform of such created subregions 

of the distribution is equal to   ( )    in the formula (5). The statistical method has been already used 

to refine the structures of decagonal quasicrystals e.g. AlCuMe, Me={Co, Rh, Ir} alloys [10]. Further 

refinement can be done by using Generalized Penrose Tiling (GPT) instead of standard PT [11]. In 

higher-dimensional picture GPT can be generated by shifting higher-dimensional projection strip by a 

fraction of unit vector,  resulting in change of shape of atomic surfaces. Three of previously 

pentagonal atomic surfaces become decagons and one additional pentagonal atomic surface is created. 

Projecting higher dimensional periodic lattice through such atomic surfaces generates GPT. The 

atomic structure depends on the shift. The unit tiles of GPT are the same two Penrose rhombuses as in 

PT, however the matching rules are different. GPT does not belong to Penrose mutual local 

derivability (PMLD) class of tilings, so each of the tilings will have slightly different diffraction 

pattern (example of how diffraction peak intensity changes in function of shift s is presented in Figure 

2 left). This allows to use shift as additional refinement parameter during structure refinement, 

effectively allowing us to fit long range order of the structure, resulting in the improvement of a model 

[11] – see Figure 2 (right). 
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Figure 2. (left) Change of diffraction peak’s relative intensity in function of shift s; (right) R-factor in the function of shift, 

calculated for the GPT with simple decoration (vertex decoration and three identical atoms per rhombus located inside). 

Different depths of minima correspond to the lack of symmetry of atomic decoration inside building units. In case of 

symmetrical units (e.g.. atoms only in vertices of building units or no decoration) those minima are the same. Parameter s=1 

means that we return to the initial position with four pentagons. 

 

2.2 The Ammann Tiling 

3D quasicrystals are known to exhibit icosahedral point symmetry in the reciprocal space. The 

structure of icosahedral quasicrystals can be modeled with the use of Ammann Tiling [12]. It uses two 

golden rhombohedra: obtuse (oblate) and acute (prolate) to cover 3D space. The statistical distribution 

constructed for vertex decoration of the AT is also uniform as in the case of PT and non-zero only in 

region limited to rhombic triacontahedron [8]. It was mentioned before that AUC is the oblique 

projection of the atomic surface onto the physical space, therefore similarity between the shape of 

atomic surface and AUC for AT is obvious. The subdivision of the AUC must be performed with 

respect to the reference node of each of two rhombohedra. Obtained subregion has the shape of obtuse 

rhombohedron in the case of obtuse structure unit and acute rhombohedron for acute structure unit 

(Figure 3). There are ten possible orientations for each rhombohedron. 

  

Figure 3. Subregions belonging to the reference vertex of acute rhombohedron (left) and obtuse rhombohedron (right) inside 

the region of non-zero statistical distribution (red rhombic triacontahedron).  

3.  Corrections to the structure factor 

The main purpose of the structure refinement is to obtain the best structural model with respect to 

experimental data. Structural information can be obtained from the X-ray diffraction pattern. The 

calculation of structure factor allows to compare theoretical model of the structure with peaks’ 

intensities collected in the diffraction experiment. Despite geometric structure factor we need to 

consider effects changing peak intensity including phononic and phasonic disorder [13]. The statistical 

method allows to incorporate both effects within one uniform formalism. If we assume independent 

atom fluctuation from the equilibrium position [14] by the distance subjected to any kind of 

distribution the statistical distribution  (   ) will be smeared along (1,1) direction [3] – see Figure 4. 

In case of quasicrystals with linear scaling relation smearing leads to a broadening of the  ( ) line. To 

properly calculate the structure factor we need to consider full  (   ) distribution, but calculations 

lead to a simple result. Structure factor is the product of geometric structure factor and the correction 

term. If atomic positions are subjected to Gaussian distribution the correction takes the form of Debye-

Waller factor [15]. The phononic correction for quasicrystals is the same as for periodic crystals. 
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Figure 4. (left) The AUC and TAU2-scaling relation for Fibonacci chain modified by Gaussian phononic smearing. 

Respective  ( ) relation for ideal structure is shown in the inset; (right) The phonon correction term calculated for 

quasicrystal (solid line) and periodic crystal (full circles). The intensity of the peak for the structure with phonons (  ) 

was normalized by intensity of the peak for the structure without phonons ( ). In both plots the amplitude of phonons 

was 2% of    (the standard deviation). Main scattering vector         [    ].  

It is a well-known fact that the underestimation of the weak peaks’ intensities is observed in the 

calculated vs. observed intensities plots for quasicrystals. Recently, the observation was made with a 

conclusion that improper handling of phasonic disorder can lead to biased intensities of reflections 

calculated within a model [5]. In particular, generalized Debye-Waller correction may be responsible 

for the above mentioned effect (Figure 4 - right). Based on the statistical method we are able to handle 

the problem of phasons analytically by taking into account geometric restrictions of phason flips. 

Improvement of resulted model in terms of R-factor is for now proven in computer simulations [2].    

 

  

Figure 4. (left) The AUC for the Fibonacci chain with phasons (flip ratio      ); (right) Calculated vs. “observed” 

intensities in the diffraction diagram of Fibonacci chain with phasons (    ) and standard phasonic Debye-Waller 

correction. The characteristic bias is observed for weak reflections (      ). 

 

Conclusions 

The statistical approach is a complete mathematical theory serving description of periodic and non-

periodic structures. Its foundation is based on the possibility of constructing distribution function with 

full structural information necessary to calculate the structure factor. Although the method can be 
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applied to periodic crystals as well, its full potential is seen as far as aperiodic systems are considered. 

In this case, traditional unit cell is being replaced by the Average Unit Cell. The advantage of the 

method is seen in its applicability. It can be constructed for structures with no nD representation and 

therefore can be used beyond limitations of higher-dimensional approach. The statistical approach 

allows to incorporate both phononic and phasonic disorder. Although phononic correction can be 

considered in Debye-Waller form for quasicrystals as well, its phasonic generalization seems to fail in 

weak-peaks-regime. Based on statistical formalism we are able to handle phasons in fully analytical 

manner. As a result, more accurate structure models are achievable.    
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