International Conference on Strongly Correlated Electron Systems (SCES 2016) IOP Publishing
IOP Conf. Series: Journal of Physics: Conf. Series 807 (2017) 052010 doi:10.1088/1742-6596/807/5/052010

Vortex states in a superconductor under a helical
magnetic field

Saoto Fukui', Masaru Kato'! and Yoshihiko Togawa?

! Department of Mathematical Sciences, Osaka Prefecture University, 1-1, Gakuencho,
Nakaku, Sakai, Osaka 599-8531, Japan
2 Department of Physics and Electronics, Osaka Prefecture University, 1-1, Gakuencho,
Nakaku, Sakai, Osaka 599-8531, Japan

E-mail: st1100350edu.osakafu-u.ac.jp

Abstract. We have studied vortex states in a chiral helimagnet / superconductor bilayer
system numerically. We consider a two-dimensional superconductor subsystem. An effect of a
chiral helimagnet on a superconductor is taken as a magnetic field, which oscillates spatially.
Solving the Ginzburg-Landau equations, we obtain various vortex states. Comparing free
energies, we find the most stable vortex states under only the oscillating magnetic field Hcum
and under the Hcam and the homogeneous applied magnetic field Happi-

1. Introduction

Recently, a chiral helimagnet (CHM) attracts attention in the field of magnetism [1]. This
magnetic structure consists of spins that form a helical rotation along a helical axis in Fig.1(a).
In the CHM, there are two interactions between nearest neighbor spins; a ferromagnetic exchange
interaction and the Dzyaloshinsky-Moriya (DM) interaction[2, 3]. The ferromagnetic interaction
causes nearest neighbor spins to be parallel. On the other hand, the DM interaction causes
nearest neighbor spins to be perpendicular to each other. The competition between two
interactions leads to the small finite angle between nearest neighbor spins. Then, all spins
rotates along the helical axis. Under an applied magnetic field, this helical magnetic structure
in the CHM changes into a chiral soliton lattice (CSL), which consists of ferromagnetic domains
periodically partitioned by 360° domain walls in Fig.1(b). We can regard domain walls as
solitons. In the experiment, the magnetic structure of the CHM and the CSL are observed
recently[1].

We focus on the effect of the chiral helimagnet on a superconductor(SC). In general, there
appear vortices in type-II SCs under a homogeneous magnetic field. These vortices are affectied
by the strength of the magnetic field and external current. Also, vortices are affected by a
ferromagnet(FM). The FM / SC hybrid structure enhances critical current because of a pinning
of vortices[4]. We expect that the CHM also affects vortices strongly. The helical magnetic
structure of the CHM causes a helical magnetic field outside the CHM. So, we investigate vortex
states in the SC under the helical magnetic field. For this purpose, we solve the Ginzburg-Landau
equations numerically[5, 6, 7], and obtain stable vortex states.
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Figure 1. Spin configurations of (a) a chiral helimagnetic structure, and (b) a chiral soliton
lattice under an applied magnetic field Hypp).
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2. Methods

We consider a CHM / SC bilayer system in Fig.2. First, we neglect effects of the SC on the
CHM. On the other hand, the effect of the CHM on SC is taken as an external magnetic field
H . We assume the distribution of H ¢y is same as the spin configuration of the CHM. So,
H v is helical along the helical axis. We consider a two-dimentional SC system. Then, only
the perpendicular component of H cym|(H cam).| can be taken into account. Since (Hcpm).
oscillates spatially, this situation is same as the two-dimenstional SC system under the oscillating
magnetic field (Hcpwm).. Hcopwm is obtained from a Hamiltonian for the CHM][8];

H:—stn'sn+1+D'an XSn—&—l"‘zuBHapplZwa (1)

where S, is a n-th spin, pp is the Borh magneton, H,p,1 = (0,0, Hyppr) is the homogeneous
applied magnetic field, J is the coefficient of the exchange interaction, and D = (D,0,0) is a
DM vector that is parallel to the helical axis. The spin is expressed in a polar coordinate;

S, = S(sinf,, cos ¢, sinb, sinp,cosb,,). (2)

In stable magnetic structures, ¢ = 7/2. From the Hamiltonian [Eq.(1)] in the continuum limit,
we obtain distribution of angle 6(x) of spins;

(x) = 2sin~! [sn (JkHi*:v | k)] + M, (3)

where sn(u | k) is the Jacobi’s elliptic function and k is a modulus of the elliptic function. k is
determined by,

ma  E(k) @)
AWH ko
E(k) is the complete elliptic integral of the second kind and o = tan~!(D/J). H* in Eqs.(3)
and (4) is a normalized applied magnetic field,

a282\/J2 4+ D%’

where a is a lattice constant and we assume a ~ &y (&p is a coherence length at zero temperature).
Finally, from Eqgs.(2) and (3), (Hext)- is given by,

(Hext)-(x) = Ho cos 0(z) + Hyppl- (6)
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The first term is a magnetic field from the CHM (Hcpym). and the second term is the
homogeneous applied magnetic field. The period of the helical rotation L’ is determined by,

2kK(k)
T VR

where K (k) is the complete elliptic integral of the first kind. Under this magnetic field (H ext).,
we solve the Ginzburg-Landau equations;

LI

(7)

9 9 1 h e* 2 B
vl + Blofs + 5 (57 - S4) v =0, (5)
A7 dm [ e*h , , " e*? "
Curl(curl A — Hext) = ?J = ? Qm*z(w Vd) — ¢VLD ) - m*cw 1/1A : (9)

where o = ag(T —1T¢), T is a temperature, T, is a critical temperature, and ag, [ are coefficients.
1 is an superconuducting order parameter, e¢* is an effective charge, m* is an effective mass, A
is a magnetic vector potential, and J is a supercurrent density. When we solve these equations
using the finite element method, we give the initial values of the order parameter ¢ randomly
and obtain several stable solutions by iterations[9].
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Figure 2. Chiral halimegnet (CHM) / Superconductor (SC) bilayer system.

3. Results and Discussions

We show vortex configurations in the SC under (Heyxt). in Eq.(6). We take the Ginzburg-Landau
parameter Kk = X\g/§o = 10 (¢ is a penetration length at zero temperature), the temperature
T = 0.3T,. The ratio between the ferromagnetic exchange interaction and the DM interaction
is taken as D/J = 0.16, which is an experimental data of the CHM, Cr;/3NbS3[10]. The system
sizes are 7.0L'¢y x 20§, where L' is the helical period in Eq.(7). For Happ/(Po/8) = 0.00
(®g = h/2e is a quantum flux), L'/, is approximately 39.2699.

We solve the Ginzburg-Landau equations and obtain a vortex configuration for Hy/(®o/&2) =
0.020, Happi/(Po/E2) = 0.000, which is shown in Fig.3. From the distributions of phases (b) and
magnetic field (c), we find that there are two kind of vortices, which have different directions
of quantum fluxes. We call these vortices up- and down-vortices, respectively. In Fig.3, we
find that up- and down-vortices appear alternately. Considering a following interaction between
vortices and the external magnetic field, this behavior can be explained;

1
Evr = —E(I)o “H eyt (10)
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Figure 3. Distributions of (a) order parameter (vortex configuration), (b) phase, and (c)
magnetic field for Hy/(®o/E3) = 0.020, Happi/(Po/&3) = 0.000.
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Figure 4. Vortex configurations for Hy/(®/£3) = 0.020, Happ/(®o/E3) = 0.000.

Table 1. Free energies F for vortex configurations in Figs.3 and 4.
Vortex state Free energy F
Fig.3 4166.04062646254
Fig.4(a) 4139.90157232138
Fig.4(b) 4152.76358564515
Fig.4(c) 4152.79599929134
Fig.4(d) 4197.60960397317

When we solve the GL equations with other initial states, other vortex configurations are
obtained and stable configurations are shown in Fig.4 (a) - (d). In the experiment, these vortex
configurations may be found due to experimental circumstances. But, we determine the most
stable vortex configuration theoretically. Therefore, we calculate the Ginzburg-Landau free

energy F (1, A);

9 2
curl A — 37;

Fu ) = [ ez (0r =17+ 169 = Ayl de + w2ery? | a0, (1)

where £(T) is a coherence length and A = (21r/®g)A. These free energies are listed in Table 1.
From the Table 1, vortex state in Fig.4(a) is the most stable of these states. In Fig.4(a), there
are the least vortices in these states. In Fig.4(b) and (c), the numbers of vortices are same, but
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vortex configurations are different. Then, free energies are different slightly. The free energy in
Fig.4(d) is the largest of these states. In Fig.4(d), there are the most vortices and two vortices
form pairs in the fifth- and sixth- rows from the left side.

Therefore, the most stable vortex state is Fig.4(a) for Ho/(®o/¢2) = 0.020 and
Hoppt/(®0/€3) = 0.000. If the (Hext). changes, the most stable state may change from the
state in Fig.4(a). When the (H eyt ), becomes larger, the most stable state may change to states

in Fig.4(b) and (c). Further (Hext). becomes larger and then the vortex state in Fig.3 may
become the most stable.
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Figure 5. Distributions of (a) order parameter (vortex configuration), (b) phase, and (c)
magnetic field for Hy/(®o/&3) = 0.020, Hoppi/(®o/E2) = 0.0015.
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Figure 6. Vortex configurations for Hy/(®o/&2) = 0.020, Happ1/(®o/&3) = 0.0015.

Next, we show effects of the CHM under the homogeneous applied magnetic field on vortex
states. Ho/(®o/&3) is fixed to 0.020. The vortex configuration for H,,, = 0.000 has been
already shown in Figs.3 and 4. We obtain vortex configurations for H,,, = 0.0015 in Figs.5
and 6. These vortex configurations result from the calculation with different initial values of the
order parameter. Under the applied magnetic field (H,pp1 > 0), the magnitude of the magnetic
field in the negative magnetic field region becomes smaller. Then, the number of down-vortices
decreases in Fig.6(c) and (d), or down-vortices disappear in Fig.5, 6(a) and (b). On the other
hand, the magnitude of the magnetic field in the positive magnetic field region becomes larger
and the number of up-vortices increases.
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Table 2. Free energies F for vortex configurations in Figs.5 and 6.
Vortex state Free energy F
Fig.5 4243.23216334796
Fig.6(a) 4261.39881390694
Fig.6(b) 4261.40355039939
Fig.6(c) 4307.83875655273
Fig.6(d) 4324.99159993312

Again, we compare free energies of vortex states in Figs.5 and 6. These free energies are
listed in Table 2. From the Table 2, free energies for Figs.6(c) and (d) are larger. In these
vortex configurations, down-vortices remain in the second- and sixth-rows from the left side (c)
and in the second- and fifth-rows from the right side (d), respectively. These down-vortices
lead to the increase of free energies. On the other hand, free energies in Figs.5, 6(a) and (b)
are smaller, where the down-vortices disappear. Then, we focus on the number and location of
up-vortices. In Figs.6(a) and (b), the numbers of up-vortices are same, but vortex configurations
are different. In particular, locations of the single vortex rows are different between these two
vortex configurations. The distance between two single vortex rows in Fig.6(a) is longer than
that in Fig.6(b). Then, the free energy in Fig.6(a) is slightly smaller than that in Fig.6(b).
Finally, the most stable vortex state is Fig.5, where there are the least up-vortices. Similarly,
the most stable state also may change from Fig.5, if the homogeneous applied magnetic field
changes. From the Figs.3-6, the most stable state is controlled by the magnetic field (Hext).-

4. Conclusions

We have obtained vortex states in the CHM / SC bilayer systems numerically. Solving the GL
equations, we found that up- and down-vortices appear in the SC. Moreover, using various initial
values of the order parameter, we obtained various stable vortex configurations. Experimentally,
many patterns of vortex configurations may be obtained. We compared free energies of these
configurations and found the most stable state theoretically. Then, we found that the most
stable state depends on the magnetic field from the chiral helimagnet and the homogeneous
applied magnetic field.
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