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Abstract.

The local Kondo entanglement is defined as the concurrence of a short-ranged Kondo
singlet state consisting of a localized magnetic moment and a nearby conduction electron. We
derive the entanglement phase diagram of the Rasul-Schlottmann model, the effective spin-
only Hamiltonian for the two-impurity Kondo model in the numerical renormalization group
approach. We show that the local Kondo entanglement vanishes exactly at the two-impurity
Kondo critical point, associated concomitantly with a jump in the inter-impurity entanglement.
We discuss how to generalize this result to a Kondo lattice model preserving the same enhanced
spin symmetry.

1. Introduction
The two-impurity Kondo model (TIKM)

Hrren = Ho + Jg[S1 - 5.(1) + Sy - 5.(2)] (1)

is a prototype model system to understand the competition between Kondo effect and the
Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction in strongly correlated electron systems|1,
2, 3|. Here, Hy represents the conduction electron bath; (51, 52) the impurity spins localized at
the sites R and Ra; (5.(1), 5.(2)) the conduction electron spins at the sites 7 and 7. Usually,
the sites ﬁl and 7 ( or ég and 75) are the nearby sites in the real space so that Jx (> 0)
describes the short-ranged Kondo coupling. For a metallic bath with the band width D and
finite density of states at the Fermi level pr, the system involves two distinct energy scales: the
single-ion Kondo temperature Tx ~ Dexp(—ﬁ) and the inter-impurity RKKY interaction
Jr. Thus the TIKM has two stable fixed points: the strong Kondo coupling limit (Jg — 0)
where individual impurity spins are completely quenched by Kondo effect, and the strong RKKY
interaction limit (Tx — 0) where the two impurity spins are locked into an antiferromagnetic
singlet[1, 4].

The primary focus in the two-impurity problem is the situation when Tk and Jp are
comparable to each other. In this intermediate parameter regime the physical properties
crossover from one limit to another[4, 5]. Of particular interesting is the case when the crossover
is sharpened leading to a phase transition. Indeed, when the bath has a hidden particle-hole
symmetry at half-filling, an unstable interacting fixed point near Jr/Tx ~ 2.2 was revealed
by the numerical renormalization group[4] and conformal field theory studies[6]. It was soon
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Figure 1. (color online) The cartoon picture of the RS model: the local magnetic moments and
the conduction electron spins are denoted by big blue circled and small green circled arrows,
respectively. Tk, Jr, and K represent the single-ion Kondo energy scale, the RKKY interaction,
and the interaction induced cross Kondo coupling.

pointed out by Rasul and Schlottmann[7] that most of the singular features associated with
the unstable fixed point can be understood phenomenologically by an spin-only effective model
involving two impurity spins Sa, Sg, and two conduction electron spins Se(a), 50(b), as shown
in Fig.1. The Rasul-Schlottmann (RS) Hamiltonian is given by

—

Hps =T[54 - 5.(a) + Sp - 5e(b)] + JrSa - Sp + K[Sa - 5.(b) + Sp - 5.(a)]. (2)

This model can be regarded as the effective Hamiltonian of the original TIKM at the half-
filling where only the spin degrees of freedom are relevant while the charge degrees of freedom
are frozen [1, 6, 8]. The Jr describes the intersite RKKY interaction energy, Tk the splitting
between the Kondo singlet and the spin triplet states, while the cross-coupling K represents the
interaction-induced Kondo frustration as a result of many-body process.

It is known that the two-impurity Kondo critical point may be replaced by a crossover in
some circumstances within different numerical approaches[8, 9, 10, 11], while with this symmetry
a groundstate degeneracy at the critical point is observed [8]. Such long-standing discrepancy
between various numerical approaches has been ultimately resolved by the Natural Orbital
Renormalization Group approach, confirming the link of the two-impurity Kondo critical point
to the hidden particle-hole symmetry[12]. Compatible with all these observations, the RS
model indeed exhibits an enhanced degeneracy at a special point P : (K/Tx = 1,Jr/Tk = 2)
corresponding to the critical point[7]. More recently, we have thoroughly reexamined the RS
model ( in an unpublished arxiv preprint [13]) from the quantum entanglement perspective. In
this proceedings paper, we shall briefly illustrate the main results of this work by highlighting
the concept of local Kondo entanglement. We also discuss how to generalize these results to a
Kondo lattice model preserving the same enhanced spin symmetry.

2. Solutions of the RS model
For our purpose we assume that all the interactions involved are positive and spin-SU(2)
invariant. Because Eq. (2) is also invariant under the simultaneous permutations between (
S4, Sp ) and (Tk, K), the regime with strong frustration corresponds to K = Tx. Hence we
only need to consider the situation 0 < K/Tx < 1. In the following we set Tx = 1 and (Jg, K)
are tunable independently.

The eigenstates of Hrg are solved based on a complete set of the conventional basis
|S#(A), sZ(a); S*(B), sZ(b)) and labeled by the total spin S, its z-component S, and the parity
(with respect to permutations of the two local moments) [13]. Because we consider Tk, Jr, and
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K are all antiferromagnetic, the groundstate is among the mixed states of the two singlets of
even parity. They are denoted by (each up to a normalization factor)

A—J 2
Wion) = 1 BLAD+ 00 + STE2 (U0 + | i) ()
—A+2K -2
JR——2K(| Yl + 1l 41)
and
A
[Wory = LA+ 14700+~ 2 L2 41500 +] 1561) @
A+2K —2
+ W(’ YTl + 1l 41)
The corresponding eigen energies are
1 , 1
Eq+) = B) = 58, Eq+) = Eq) + 54, (5)

with E(O) = —JR/4 — K/2 — 1/2 and A = \/(1 + K — JR)Q + 3(K — 1)2.

It is apparent that the groundstate is the singlet Wg+, and at the point P (i.e., K = Tk =
Jr/2) the repulsive level spacing (energy gap) A = 0 so that the singlet ¥+ is degenerate with
U(+. Notice that one of the odd triplet ¥;- is also degenerate with U+ for K =1, Jp > 2[13].
Hence the model indeed shows a strong frustration along the line K = 1 and exhibits an enlarged
symmetry at P[14]. In particular, the correct forms of wavefunctions across P can be approached
by taking either limits (K =1,Jg =2 —¢€) and (K =1,Jg =2 +¢€), € — 0", It readily reveals
a discontinuity in [¥(g+)).

3. Entanglement phase diagram

One of the conventional entanglement quantities in impurity spin systems is the single-impurity
Kondo entanglement (SIKE), defined as the entanglement between a local moment, say S(A),
and the rest of the system, denoted by A. It is usually measured by the von Neumann
entropy Esrxr = —T7(a){Pimp(A) 1083 Pimp(A)}, where pimp(A) is the reduced density matrix
pimp(A) = Tr;p. Here, p = |¥q)(Vq| is the density matrix for the groundstate ( in our case
[Wa) = [¥(o+))) of the whole system. It is straightforwardly seen that s;xp = 1 due to
the SU(2)-spin invariance, indicating a maximal entanglement between a local moment and the
reminder of the total system. Another frequently used entanglement quantity in the TIKM is the
entanglement of the two local moments with conduction electron bath, called the two-impurity
Kondo entanglement (TIKE). This entanglement is determined by the reduced density matrix
of the two impurities, pimp(AB) =T ()P, With T'r(.) indicating trace over the Hilbert subspace
spanned by conduction electrons. It can be quantified by the von Neumann entropy[15]

1-p
Erire = —pslogy ps — (1 — ps) log, 3 = (6)
Here, ps = i — fap is the fidelity of the spin singlet within the reduced two impurity state, and
fap = (Uo+|S(A) - S(B)|¥y+) is the spin-spin correlation function on the groundstate. In our

case,
! _1 1+ K —Jg _1
P U K124k —12 4

(7)
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Figure 2. (color online) The concurrence of the IIE (a) and the LKE (b) as functions of Jg
and K. The single-ion Kondo energy scale is taken as unit Tx = 1.

We find that Eprg g is not only a smoothly varying function of f4p, but also a smooth function
of K and Jg without detectable feature across the point P[16].

Obviously, both SIKE and TIKE cannot capture the variation of Kondo effect across the
transition point. In Ref.[15], the inter-impurity entanglement (IIE) is introduced. The IIE is
measured by the concurrence or negativity, C;rg, and its evaluation is also related to the reduced
two-impurity density matrix pimp(AB). The concurrence can be expressed by[15, 16]

C[[E = max{—QfAB - 1/2,0}. (8)

The result is plotted in Fig.2(a). For fixed K < 1, Crrg increases continuously with Jgr. For
K =1, Crrg shows a sudden increase from zero to unity when Jgr goes across Jg = 2, indicative
of transition to the inter-impurity singlet state.

But IIE itself is not a decisive quantity for the Kondo effect breakdown. We now turn to
such a quantity by introducing the local Kondo entanglement (LKE)[13], i.e., the entanglement
between a local moment, say S(A), and the conduction electron at its nearest neighbor site, 5,(a).
The LKE differs to the conventional impurity entanglements as it involves only a spatially short-
ranged Kondo pair as one can clearly see from the original Kondo coupling in Eq.(1). Similar to
ITE, the LKE can be evaluated by the concurrence or negativity, via the corresponding reduced
density matrix prx(Aa) = Tr( Aa) p, with Tr( Aa) indicating the trace in the Hilbert space except

the subspace spanned by S4 and Sc(a). Thus we have
CLKE = max{—2an - 1/2, 0}, (9)
where fa, = (Ug+|S(A) - 5.(a)|¥g+) is the correlation function of the local Kondo singlet state,

1 Jr+2K —4

1
fA“:Z\/(JR—K—1)2+3(K—1)2 a4

(10)

The result of Crxp is plotted in Fig.2(b). Interestingly, Crxr develops a maximum for
0 < K <1, Jg < 2 and decreases monotonically for Jgp > 2. But along the line K = 1 it
shows a sudden suppression for Jp > 2 .

An entanglement phase diagram in terms of K and Jg is drawn in Fig.3, where three different
phases divided by the lines Jp = K + 1 and Jg = 4 — 2K are indicated: the IIE phase
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Figure 3. (color online) Entanglement phase diagram: there are three distinct phases divided
by the lines Crxrp = 0 and Crjg = 0. These two lines intersect at the singular point:
P:(K=1,Jp=2).

(Crre > 0,Crxr = 0), the LKE phase (Coxkr > 0,Crrg > 0), and the co-existence phase
(Crre > 0, Crxr > 0). It is important to understand that the Kondo screening takes place only
in the regions with non-zero LKE, i.e., the LKE and co-existence phases. In the co-existence
phase K +1 < Jgp <4 — 2K, one has @ <Crig +CrkEr < 1, so only one of the entanglements
could be maximized or violate the Bell inequality[16]. Moreover, the IIE and LKE phases could
contact only at the point P: by increasing Jr across P along the strong frustration line K =1,
fap has a sudden drop from 1/4 to —1/2, fa, has a jump from —1/2 to 0. Or, C;;g has a jump
from 0 to 1 while Cpxp has a sudden drop from 1/2 to 0.

Therefore, together with the discontinuity of the wavefunction |¥ () mentioned previously,
the sudden changes along the line K = 1 in the IIE and LKE do evidence a phase transition
companied by the breakdown of Kondo effect. Of course, a true second order phase transition
usually requires a continuous suppression of the order parameter. The discontinuity in the ITE
or LKE ( as an order parameter here) may be either due to the simplicity of the present model
or due to the finite degrees of freedom associated with the local components[4, 7, 12].

4. Extension to the lattice case: discussions

It is interesting to discuss implications of the present results in more generic Kondo lattice models
or in heavy fermion metals where the magnetic quantum phase transitions may be influenced by
the variation of Kondo effect. A local quantum phase transition is proposed in the generic Kondo
lattice phase diagram where the criticality is associated with a critical breakdown of the collective
Kondo effect[17, 18]. Near the critical point, the Hall constant shows a discontinuous jump due
to the reconstruction of the Fermi surface across the critical point[17, 19]. Experimental evidence
for this scenario comes from several prototypes of heavy fermion metals including YbRhySis[20]
and CeNiAsO[21] where the observed Hall constant exhibits a sudden change accompanying the
magnetic phase transition.

Although this scenario could be naturally understood based on the Kondo entanglement
picture, a lattice model Hamiltonian with exact solutions showing the Kondo entanglement
breakdown transition is still missing. Based on above considerations, the inter-impurity
antiferromagnetic singlet discussed in the TIKM evolves into the antiferromagneic ordered state
in the lattice case, leading to the transition from the paramagnetic to antiferromangeitc phases.
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So we can extend the RS model to the following dimerized Kondo lattice model

Hpgr = Z TK[gA,j - Se(a, j) + gB,j - 5u(b, )] + JrSa - [gB,j—l + gB,j] (11)
J

+ Z KgA,j . [gc(b)] - ]-) + §c(b,j)] + KgB,j : [gc(amj) + gC(aLj + 1)]
J

Apparently, each building block of this lattice model is the four spin RS model. Thus the
lattice model shares the same symmetry in addition to the transitional invariance. Generally, in
the regime with relatively small K, the Kondo and inter-local-moment singlets can co-exist in
the intermediate regime of Ji. But the co-existence regime diminishes with increasing K and a
direct Kondo singlet breakdown transition takes place when the Kondo coupling is maximally
frustrated (at K = Tk). In the Kondo lattice phase diagram this condition should correspond
to the regime with strong geometric frustrations and quantum fluctuations but no spin liquid
phase sets in[18]. Because the lattice model respects the enhanced spin symmetry as that of
the RS model, we expect that the groundstate of this model is degenerated at the critical
point mentioned above. The LKE breakdown is thus naturally expected at the critical point.
Therefore, the LKE is an appropriate measure of the local quantum criticality in Kondo lattice
systems. The detailed results of the dimerized Kondo lattice model Eq.(11) will be reported in
the further coming work.
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