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Abstract. We report the effects of surface roughness on the edge current in a chiral d -
wave superconductors. By solving the quasiclassical Eilenberger equation and the Maxwell
equation simultaneously, we obtained self-consistent solutions of the pair potential and the
vector potential. We calculate numerically the spatial distribution of the chiral edge current
in a small superconductor with and without surface roughness. The edge current in a d -wave
superconductor is robust against surface roughness. Its direction, however, is inverted by surface
roughness.

1. Introduction

The experimental detection of a spontaneous edge current is essential to demonstrate chiral
superconductivity. The angular momentum of Cooper pairs give rise to the edge current in chiral
superconductors [1, 2]. A leading candidate for a chiral superconductor is Strontium ruthenate
Sr2RuO4 [3–5] in which chiral p-wave superconductivity is believe to realized. In addition to
chiral p-wave superconductors, the possibilities of chiral d -wave superconductivity have been
discussed in several materials [6–16]. Several theories have concluded that the amount of edge
current becomes smaller in a chiral d-wave superconductor compared to the chiral p-wave case
even in the clean limit [17,18].

To detect the spontaneous edge current, we can not avoid the problem of surface roughness.
Experimentally it is difficult to make a superconducting sample with a specular surface. The
surface roughness of a sample would greatly affect the chiral edge current in a chiral d-wave
superconductor. In the case of non-chiral d-wave superconductors, the surface Andreev bound
states [21,22] are fragile against surface roughness [19,20]. We can infer from this conclusion that
the edge states in a chiral d-wave superconductor are also fragile against the surface roughness.
Thus we study the effects of surface roughness on the chiral edge current in chiral d-wave
superconductors.

In this paper, we theoretically study the spontaneous edge currents and the spontaneous field
in a small chiral-d-wave superconducting disk based on the quasiclassical Eilenberger formalism.
By solving the Eilenberger and Maxwell equations self-consistently and simultaneously, we obtain
the spatial profiles of the chiral edge currents and the temperature dependence of a spontaneous
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Figure 1. Schematics of two-dimensional superconducting disks. The disk with a specular
surface and that with a rough surface are shown in (a) and (b), respectively. The radius of the
disk is denoted by R. The width of the disordered region is denoted by W in (b).

magnetization. The surface roughness is considered in terms of the impurity self-energy near
a surface. The edge current in a d -wave superconductor is robust against surface roughness.
However, the edge current flows in the opposite direction compared with that in the clean limit.

2. Formulation

We consider a small two-dimensional disk of a chiral superconductor as shown in Fig. 1. We
assume there is no chiral-domain wall in a disk by choosing the radius of the disk R to be
comparable to the coherence length. We apply the quasiclassical Green-function theory [23] to
investigate the spontaneous chiral current in a chiral superconductor. The Eilenberger equation
for spin-singlet superconductors in equilibrium is represented as

ivFk ·∇r ĝ +
[
Ĥ + Σ̂ , ĝ

]
−

= 0, (1)

where vF and k are the Fermi velocity and the unit wave vector on the Fermi surface, respectively.
We assume the Fermi surface is isotropic. Throughout this paper, we use the set of units
h̄ = kB = c = 1, where 2πh̄ is the Planck constant, kB is the Boltzmann constant, and c is the
speed of light. The matrices ĝ and Ĥ are defined as follows,

ĝ(r,k, iωn) =

[
g(r,k, iωn) f(r,k, iωn)
−f
˜
(r,k, iωn) −g

˜
(r,k, iωn)

]
, (2)

Ĥ(r,k, iωn) =

[
ξ(r,k, iωn) ∆(r,k)
∆
˜
(r,k) ξ

˜
(r,k, iωn)

]
, (3)

ξ(r,k, iωn) = [iωn + evFk ·A(r)] , (4)

where ωn = (2n + 1)πT is the Matsubara frequencies with n being an integer, T is the
temperature, ∆ represents the pair potential, and A is the vector potential. All of the functions
including k satisfy the relation K

˜
(r,k, iωn) = K∗(r,−k, iωn). The symbol ·̂ represents 2 × 2

matrix structure.
We take into account the effects of surface roughness through the impurity self-energy, which

is defined by

Σ̂(r, iωn) = Θ(r −R+ w)
i

2τ0

∫
dθ

2π
ĝ(r, θ, iωn) (5)

where r = |r|, kx = cos θ, ky = sin θ, Θ is the step function, and τ0 is the mean free time due
to the impurity scatterings. The self-energy has finite values only near the surface as shown in
Fig. 1(b), where W denotes the width of the disordered region.
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We consider the spin-singlet chiral d-wave superconductor. The pair potential for a chiral
d-wave superconductor is described by

∆(r, θ) = ∆1(r) cos(2θ) + iν∆2(r) sin(2θ), (6)

where ∆1 and ∆2 are the local amplitude of two independent components. The doubly
degenerate chiral superconducting states are indicated by ±ν. In this study, we consider
superconducting states with a positive ν. In the simulations, ∆1 and ∆2 are self-consistently
determined by the gap equation,

[
∆1(r)

∆2(r)

]
=N0g0πT

∑

ωn

∫
dθ′

2π
f(r, θ′, iωn)

[
V1(θ

′)

V2(θ
′)

]
(7)

where N0 is the density of states per spin at the Fermi level. The coupling constant g0 is
determined by

(N0g0)
−1 = ln

(
T

Tc

)
+

nc∑

n=0

1

n+ 1/2
, (8)

where nc = (ωc/2πT ) with ωc being the cutoff energy. The attractive interactions are given by
V1(θ) = 2 cos(2θ) and V2(θ) = 2 sin(2θ). The electric current j(r) is calculated from the Green
function

j(r) = 2iπ|e|vFN0T
∑

ωn

∫
dθ

2π
k g(r, θ, iωn) (9)

The vector potential should be determined by solving the Maxwell equations ∇×A(r) = H(r)
and ∇ × H(r) = 4πj(r). In a finite size superconductor, we define the amplitude of a
spontaneous magnetization M in terms of the spontaneous magnetic field H(r) as

M =
1

πR2

∫

r<R

drH(r). (10)

We iterate the Eilenberger equation and the Maxwell equation to obtain the self-consistent
solutions of ∆1(r), ∆2(r), A(r), and Σ̂(r, iωn). To solve the Eilenberger equation, we apply
the Riccati parametrization [24–26]. Moreover, we apply the technique discussed in Ref. [27] to
analize disk-shaped superconductors. We start all of the simulations with the initial condition
∆1(r) = ∆2(r) = |∆̄(T )| and A(r) = 0, where |∆̄(T )| is the amplitude of the pair potential in
a homogeneous superconductor at a temperature T .

3. Results

3.1. Chiral edge current

We first discuss the effects of surface roughness on the chiral edge current. The spatial profiles
of the edge current are shown in Fig. 2. The edge current under a specular (rough) surface is
indicated by the solid (broken) line, where we show the results only at y = 0 because they are
circular symmetric in a disk. The current densities are measured in units of j0 = h̄c2/4π|e|ξ3

0
.

We fix several parameters: the temperature T = 0.2Tc, the radius of a disk R = 10ξ0, the
penetration depth λL = 5ξ0, the cutoff energy ωc = 6πTc with Tc and ξ0 = h̄vF /2πTc being
the critical temperature and the coherence length, respectively. In the clean limit, the current
density is negative (clockwise) for |x| > 8ξ0 and is positive (counterclockwise) for |x| < 8ξ0.
This characteristic current profiles are related to the topological number of a chiral d-wave
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Figure 2. Current densities in a chiral d-wave superconductor. The solid and broken lines
indicate the results in a disk with and without surface roughness, respectively. The current
densities are measured in units of j0 = h̄c2/4π|e|ξ3

0
. We fix several parameters: the radius of a

disk R = 10ξ0, the penetration depth λL = 5ξ0, and the cutoff energy ωc = 6πTc with Tc and
ξ0 = h̄vF /2πTc being the critical temperature and the coherence length, respectively.

Figure 3. Spontaneous fields in a chiral d-wave superconductor. The solid and broken lines
indicate the results in a disk with and without surface roughness, respectively. The magnetic
fields are normalized to the second critical magnetic field Hc2 = h̄c/|e|ξ2

0
. The parameters are

set to the values used in Fig. 2.

superconductor. Because the topological number for a chiral d-wave superconductor is two, two
edge states should appear at the surface of a disk. Figure 2 shows that there are edge states
with different decay lengths in a disk, and they flows in the opposite directions each other.

When there is surface roughness, on the other hand, the current flows only in the
counterclockwise direction as shown in Fig. 2. The outer edge current vanishes due to the
surface roughness. The integrated current flows in the opposite direction compared to that in
the clean limit. We confirm that the inner chiral current can survive even under much stronger
roughness such as ξ/ℓ = 30. Therefore we conclude that the chiral current in a chiral d-wave
superconductor is robust against surface roughness. Its direction, however, flips due to the
surface roughness.
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3.2. Spontaneous field

We show the spatial profiles of spontaneous fields in a chiral d-wave disk. The result with a
specular (rough) surface is indicated by the solid (broken) line, The magnetic field is measured
in units of the second critical field Hc2 = h̄c/|e|ξ2

0
. The parameters are set to the same values

used in Fig. 2. In a chiral d-wave disk with a specular surface, the spontaneous magnetic field
is mainly localized in the region r > 5ξ0. Since the edge currents in a chiral d-wave disk cancel
intrinsically each other. The amplitude of the spontaneous magnetic field is smaller than that of
a chiral p [1]. The magnetic field generated by the outer chiral current is intrinsically screened
by the inner chiral current in addition to the Meissner current.

When there is surface roughness, the spontaneous magnetic field is positive everywhere in the
disk. In a disk with a rough surface, there is a current flowing in the counterclockwise direction.
Thus the sign of a spontaneous field is opposite to that in the clean limit.

4. Conclusion

We have studied the effects of surface roughness on the spontaneous edge current in a small
chiral superconductor with chiral d -wave pairing symmetry. On the basis of the quasiclassical
Eilenberger formalism, we numerically calculated the chiral current and the spontaneous
magnetization. The edge current of a chiral d-wave superconductor is robust against the
roughness. The direction of the total edge current, however, is opposite to that obtained in
the clean limit.
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