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Abstract. We explore the hidden symmetry in string theory by studying string scattering
amplitudes. We calculate 4-point open string scattering amplitudes with three tachyons and a
massive higher spin string state. The result can be expressed as Type D Lauricella functions
which are generalization of Gaussian Hypergeometric functions. In various high energy limits,
the string amplitudes reduced to the expected results that we obtained previously. We find
exact SL (K + 3,C) symmetry for the string amplitudes at general energy.
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1. Introduction
Quantum Field Theory (QFT) is a powerful theory in modern physics. Based on QFT,
standard model of particle physics successfully describes our microcosmic world. All important
predictions by standard model have been observed in various experiments under rather precise
level. However, to solve the UV divergence problem in QFT, the key technical procedure,
i.e. renormalization, is complicated and has not been fully understood. More seriously, the
renormalization procedure does not work for gravity, which means that it is impossible to
construct a consistent quantum gravity theory by using the conventional QFT. Most of people
believe that the divergence in QFT comes from the fundamental topological structure of point-
like particles, and it cannot be cured without modifying its topological structure. In string
theory, one extends a point-like particle to a small piece of a string. This simple extension
dramatically changes the topological structure of the theory. The new ”Feynman diagram” now
is a smooth world-sheet instead of a world-line with singularity at interacting points.

To understand the UV divergence problem better, let us briefly look at the high energy
behavior in QFT by a simple power counting. In high energy hard limit, the tree amplitude

by interchanging a spin-J particle behaves as A
(J)
tree ∼ E−2(1−J), so that the one-loop amplitude

behaves as

A
(J)
1−loop ∼

∫
d4p

(
A

(J)
tree

)2

(p2)2
∼

∫
E−4(2−J) d4E, (1)

which is finite for scalar particles (J = 0) and renormalizable for vector particles (J = 1), but
is nonrenormalizable for particles with J ≥ 2, including graviton (J = 2). However, there is a
loophole to bypass this simple argument. If we sum over all tree amplitudes by interchanging
states with different spins, the final amplitude will be

Atree =
∑
J

A
(J)
tree ∼

∑
J

aJE
−2(1−J), (2)
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which could behave rather soft, so that loop amplitudes would be finite, if the following two
conditions are satisfied simultaneously:

(i) there are infinite higher spin J particles

(ii) the coefficients aJ ’s are precisely related to each other.

In string theory, string scattering amplitudes are exponentially fall-off in high energy hard
limit, which leads to string theory being a finite theory without UV divergence. We believe that
the reason why the high energy behavior of string theory is so soft is that string theory satisfies
the above two conditions.

The first condition is trivially satisfied in string theory because a string has infinite oscillation
modes which correspond to infinite higher spin states. The second condition is highly nontrivial.
We conjecture that it corresponds to a huge symmetry in string theory, which is complicated
and not apparent so that we usually call it hidden symmetries. A useful way to investigate
the hidden symmetry is to study the symmetry among the string scattering amplitudes. Gross
has conjectured that the string scattering amplitudes are linearly related each other in the high
energy, fixed scattering angle limit [1, 2, 3]. Using the methods of Ward identities of zero norm
states [4, 5, 6], Virasoro algebra and direct calculation of scattering amplitudes, we are able to
prove the Gross conjecture and compute the linear ratios among the different string amplitudes
[7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17]. We also extend our study to the high energy, small angle
limit, i.e. Regge scattering [18, 19, 20, 21, 22]. Recently, we calculated the four-point string
amplitudes at arbitrary energy and found the amplitudes associate to SL (K + 3,C) algebra
[23, 24]. In the next section, we will calculated the four-point string amplitudes, and study their
relations in various high energy limits in section 3. In section 4, we show that how to get the
SL (K + 3,C) algebra from string amplitudes. We conclude our result in section 5.

2. Four-Point String Amplitudes
To study the symmetry of string scattering amplitudes, we consider four-point open bosonic
string scattering In the CM frame, the kinematics are

k1 =

(√
M2

1 + |k⃗1|2,−|k⃗1|, 0
)
, (3)

k2 =

(√
M2

2 + |k⃗1|2,+|k⃗1|, 0
)
, (4)

k3 =

(
−
√

M2
3 + |k⃗3|2,−|k⃗3| cosϕ,−|k⃗3| sinϕ

)
, (5)

k4 =

(
−
√

M2
4 + |k⃗3|2,+|k⃗3| cosϕ,+|k⃗3| sinϕ

)
, (6)

where ϕ is the scattering angle. The Mandelstam variables are defined as usual as

s = − (k1 + k2)
2 , t = − (k2 + k3)

2 , u = − (k1 + k3)
2 , (7)

with s+ t+ u =
∑

M2
i .

On the 2-dimensional scattering plane, there are three independent polarizations which we
can choose to be

eT = (0, 0, 1), (8)

eL =
1

M2

(
|k⃗1|,

√
M2 + |k⃗1|2, 0

)
, (9)

eP =
1

M2

(√
M2 + |k⃗1|2, |k⃗1|, 0

)
. (10)
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Note that the string amplitude with polarizations orthogonal to the scattering plane vanish. For
later use, we also define

kXi ≡ eX · ki for X = (T, P, L) . (11)

The simplest four-point string amplitude is scattered by four tachyons with M2
i = −2, i.e. the

Veneziano amplitudes. In (s, t) channel, the four-tachyon scattering amplitude can be easily
calculated,

A
(4-tachyon)
st =

⟨
eik1·X(x1)eik2·X(x2)eik3·X(x3)eik4·X(x4)

⟩
= B

(
−s

2
− 1,− t

2
− 1

)
, (12)

where

B

(
−s

2
− 1,− t

2
− 1

)
=

Γ
(
− s

2 − 1
)
Γ
(
− t

2 − 1
)

Γ
(
u
2 + 2

) , (13)

is Beta function. It is easy to verify that the Veneziano amplitude behaves as exponentially

fall-off A
(4-tachyon)
st ∼ e−E in the high energy limit (s ∼ E2 → ∞, t → ∞ and s/t fixed). This

property holds for all four-point scattering amplitudes in string theory as we will show later.
Now let us consider a general 4-point string amplitudes with three tachyons and an arbitrary

massive higher spin string state of the form,∣∣rTn , rPm, rLl
⟩
=

∏
n>0

(
αT
−n

)rTn ∏
m>0

(
αP
−m

)rPm ∏
l>0

(
αL
−l

)rLl |0, k⟩, (14)

where M2
1 = M2

3 = M2
4 = −2 are three tachyons and M2

2 ≡ M2 = 2(N − 1) is the higher spin
string state with the mass level N =

∑
n,m,l>0

(
nrTn +mrPm + lrLl

)
.

The (s, t) and (t, u) channels string scattering amplitudes of states in Eq.(14) can be calculated
to be [23, 24]

A
(rTn ,rPm,rLl )
st = B

(
− t

2
− 1,−s

2
− 1

)
F

(K)
D

(
− t

2
− 1;RT

n , R
P
m, RL

l ;
u

2
+ 2−N ; Z̃T

n , Z̃
P
m, Z̃L

l

)
·
∏
n=1

[
−(n− 1)!kT3

]rTn ∏
m=1

[
−(m− 1)!kP3

]rPm ∏
l=1

[
−(l − 1)!kL3

]rLl , (15)

A
(rTn ,rPm,rLl )
tu = B

(
− t

2
− 1,−u

2
− 1

)
F

(K)
D

(
− t

2
− 1;RT

n , R
P
m, RL

l ;
s

2
+ 2−N ;ZT

n , Z
P
m, ZL

l

)
·
∏
n=1

[
−(n− 1)!kT3

]rTn ∏
m=1

[
−(m− 1)!kP3

]rPm ∏
l=1

[
−(l − 1)!kL3

]rLl , (16)

where we have defined

RX
k ≡

{
−rX1

}1
, · · · ,

{
−rXk

}k
with {a}n = a, a, · · · , a︸ ︷︷ ︸

n

, (17)

ZX
k ≡

[
zX1

]
, · · · ,

[
zXk

]
with

[
zXk

]
= zXk0, · · · , zXk(k−1), (18)

zXkk′ =

∣∣∣∣kX1kX3
∣∣∣∣
1
k

e
2πik′

k and z̃Xkk′ ≡ 1− zXkk′ , k
′ = 0, · · · , k − 1, (19)

and the integer K is defined to be

K =

n∑
j=1

j

{for all rTj ̸=0}

+

m∑
j=1

j

{for all rPj ̸=0}

+

l∑
j=1

j

{for all rLj ̸=0}

, (20)
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which is usually different from the mass level N .

Finally, the D-type Lauricella function F
(K)
D is one of the four extensions of the Gauss

hypergeometric function to K variables and is defined as

F
(K)
D (a; b1, ..., bK ; c;x1, ..., xK)

=
∑
ki

(a)k1+···+kK

(c)k1+···+kK

(b1)k1 · · · (bn)kK
k1! · · · kK !

xk11 · · ·xkKK

=
Γ(c)

Γ(a)Γ(c− a)

∫ 1

0
dt ta−1(1− t)c−a−1 · (1− x1t)

−b1(1− x2t)
−b2 ...(1− xKt)−bK , (21)

where the integral representation of the Lauricella function F
(K)
D in the last line was discovered

by Appell and Kampe de Feriet (1926) [25].
By using the identity of Lauricella function for bi ∈ Z−

F
(K)
D (a; b1, ..., bK ; c;x1, ..., xK)

=
Γ (c) Γ (c− a−

∑
bi)

Γ (c− a) Γ (c−
∑

bi)
F

(K)
D

(
a; b1, ..., bK ; 1 + a+

∑
bi − c; 1− x1, ..., 1− xK

)
, (22)

we can express the (s, t) channel amplitude (15) in the following form

A
(rTn ,rPm,rLl )
st = B

(
− t

2
− 1,−s

2
− 1 +N

)
F

(K)
D

(
− t

2
− 1;RT

n , R
P
m, RL

l ;
s

2
+ 2−N ;ZT

n , Z
P
m, ZL

l

)
·
∏
n=1

[
−(n− 1)!kT3

]rTn ·
∏
m=1

[
−(m− 1)!kP3

]rPm ∏
l=1

[
−(l − 1)!kL3

]rLl . (23)

Now it is easy to see the string BCJ relation

A
(rTn ,rPm,rLl )
st

A
(rTn ,rPm,rLl )
tu

=
(−)NΓ

(
− s

2 − 1
)
Γ
(
s
2 + 2

)
Γ
(
u
2 + 2−N

)
Γ
(
−u

2 − 1 +N
) =

sin
(
πu
2

)
sin

(
πs
2

) =
sin (πk2 · k4)
sin (πk1 · k2)

, (24)

which was proved by monodromy of integration of string amplitudes [26, 27] and explicitly
proved recently in [28].

3. Symmetry in High Energy Limits
To study the relations among the string scattering amplitudes, we consider two different high
energy limits: hard scattering limit and Regge scattering limit. We will briefly describe the
results in the following. Readers can find the detail in a current review paper [29].

3.1. Linear Relations in Hard Limit

Hard scattering limit is the fixed angle scattering with s ∼ E2 → ∞ and
t

s
∼ sin2 ϕ

2 = constant.

The linear relations of string amplitudes in the hard scattering limit were conjectured by Gross
[1, 2, 3] and proved in [7, 8, 9, 10, 11, 13]. In the hard scattering limit eP = eL [7, 8], we can
consider only the polarization eL case. The relevant kinematics are

kT1 = 0, kT3 ≃ −E sinϕ, (25)

kL1 ≃ −2p2

M2
≃ −2E2

M2
, (26)

kL3 ≃ 2E2

M2
sin2

ϕ

2
, (27)
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with z̃Tkk′ = 1, z̃Lkk′ = 1−
(
− s

t

)1/k
e

i2πk′
k ∼ O (1).

In the hard limit, the (s, t) channel string amplitude in Eq.(15) reduces to

A
(rTn ,rLl )
st = B

(
− t

2
− 1,−s

2
− 1

)
F

(K)
D

(
− t

2
− 1;RT

n , R
L
l ;

u

2
+ 2−N ; (1)n , Z̃

L
l

)
·
∏
n=1

[(n− 1)!E sinϕ]r
T
n
∏
l=1

[
−(l − 1)!

2E2

M2
sin2

ϕ

2

]rLl
. (28)

Next, we propose the following identity

rL1∑
kr=0

(
− t

2 − 1
)
kr(

u
2 + 2−N

)
kr

(
−rL1

)
kr

kr!

(
1 +

s

t

)kr

= 0 ·
(
tu

s

)0

+ 0 ·
(
tu

s

)−1

+ · · ·+ 0 ·
(
tu

s

)−
[
rL1 +1

2

]
−1

+ CrLl

(
tu

s

)−
[
rL1 +1

2

]

+O


(
tu

s

)−
[
rL1 +1

2

]
+1

 , (29)

where CrL1
is independent of energy E and depends on rL1 and possibly scattering angle ϕ. For

rL1 = 2m being an even number, we further propose that CrL1
= (2m)!

m! and is ϕ independent. We

have verified Eq.(29) for rL1 = 0, 1, 2, · · · , 10.
It should be noted that, taking Regge limit (s → ∞ with t fixed) and setting rL1 = 2m,

Eq.(29) reduces to the Stirling number identity,

2m∑
kr=0

(
− t

2 − 1
)
kr(

− s
2

)
kr

(−2m)kr
kr!

(s
t

)kr
≃

2m∑
kr=0

(−2m)kr

(
− t

2
− 1

)
kr

(−2/t)kr

kr!

= 0 · (−t)0 + 0 · (−t)−1 + · · ·+ 0 · (−t)−m+1 +
(2m)!

m!
(−t)−m +O

{(
1

t

)m+1
}
, (30)

which was proposed in [30] and proved in [31].
In Eq.(29), the 0 terms correspond to the naive leading energy orders of string amplitudes

in the hard scattering limit. The true leading order of string amplitudes in the hard scattering
limit can then be identified

A
(rTn ,rLl )
st ≃ B

(
− t

2
− 1,−s

2
− 1

)
· CrL1

(E sinϕ)
−2

[
rL1 +1

2

]
· (· · · )

·
∏
n=1

[(n− 1)!E sinϕ]r
T
n
∏
l=1

[
−(l − 1)!

2E2

M2
sin2

ϕ

2

]rLl
∼ E

N−
∑

n≥2 nr
T
n−

(
2

[
rL1 +1

2

]
−rL1

)
−
∑

l≥3 lr
L
l
, (31)

which means that a string amplitude reaches its highest energy when rTn≥2 = rLl≥3 = 0 and

rL1 = 2m being an even number. This is first observed in [7, 8, 9, 10, 11, 13]
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Finally, the leading order string amplitudes in the hard scattering limit can be calculated to
be

A
(rT1 ,2m,rL2 )
st ≃ B

(
−s

2
− 1,− t

2
− 1

)
· F (4)

D

(
− t

2
− 1;RT

1 , R
L
2 ;

u

2
+ 2−N ; 1, ZL

2

)
· [E sinϕ]r

T
1 ·

[
−2E2

M2
sin2

ϕ

2

]2m
·
[
−2E2

M2
sin2

ϕ

2

]rL2
= B

(
−s

2
− 1,− t

2
− 1

)
(E sinϕ)N ·

(
rL1 − 1

)
!!

(
− 1

M2

)2m+rL2
(
1

2

)m+rL2

=
(
rL1 − 1

)
!!

(
− 1

M2

)2m+rL2
(
1

2

)m+rL2

·A(N,0,0), (32)

which reproduces the ratios

A
(rT1 ,2m,rL2 )
st

A
(N,0,0)
st

= (2m− 1)!!

(
− 1

M2

)2m+rL2
(
1

2

)m+rL2

, (33)

which is consistent with the previous result [7, 8, 9, 10, 11, 13].

3.2. Recurrence Relations in Regge Limit
Regge scattering limit is the small angle scattering with s ∼ E2 → ∞ and t ∼ E2 sin2 ϕ

2 =
constant. The recurrence relations of string amplitudes in the Regge scattering limit have been
studied in [30, 32, 33]. The relevant kinematics in Regge limit are

kT1 = 0, kT3 ≃ −
√
−t, (34)

kP1 ≃ − s

2M2
, kP3 ≃ − t̃

2M2
= − t−M2

2 −M2
3

2M2
, (35)

kL1 ≃ − s

2M2
, kL3 ≃ − t̃′

2M2
= − t+M2

2 −M2
3

2M2
, (36)

with z̃Tkk′ = 1, z̃Pkk′ = 1−
(
− s

t̃

)1/k
e

i2πk′
k ∼ s1/k and z̃Lkk′ = 1−

(
− s

t̃′

)1/k
e

i2πk′
k ∼ s1/k.

In the hard limit, the (s, t) channel string amplitude in Eq.(15) reduces to

A
(rTn ,rPm,rLl )
st ≃ B

(
− t

2
− 1,−s

2
− 1

)
F1

(
− t

2
− 1;−q1,−r1;−

s

2
;
s

t̃
,
s

t̃′

)
·
∏
n=1

[
(n− 1)!

√
−t

]rTn ·
∏
m=1

[
(m− 1)!

t̃

2M2

]rPm ∏
l=1

[
(l − 1)!

t̃′

2M2

]rLl
, (37)

where F1 is the Appell function. Eq.(37) agrees with the result obtained in [33] previously.
The string amplitudes in Regge limit are much more complicated than that in hard limit and

do not have linear relations. However, there are many recurrence relations of Appell functions
F1,

(a− b1 − b2)F1 − aF1 (a+ 1) + b1F1 (b1 + 1) + b2F1 (b2 + 1) = 0, (38)

cF1 − (c− a)F1 (c+ 1)− aF1 (a+ 1; c+ 1) = 0, (39)

cF1 + c (x− 1)F1 (b1 + 1)− (c− a)xF1 (b1 + 1; c+ 1) = 0, (40)

cF1 + c (y − 1)F1 (b2 + 1)− (c− a) yF1 (b2 + 1; c+ 1) = 0. (41)
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Using the above recurrence relations, we can obtain a lot of recurrence relations among the
string amplitudes in Eq.(37). One can show that by solving the recurrence relations, all the
string amplitudes at certain mass level can be expressed in term of a single amplitude [33].

4. Symmetry of Four-Point Amplitudes at General Energy
Let us recall the (s, t) channels string scattering amplitudes with three tachyons and a massive
higher spin string state in Eq.(15),

A
(rTn ,rPm,rLl )
st = B

(
− t

2
− 1,−s

2
− 1

)
F

(K)
D

(
− t

2
− 1;RT

n , R
P
m, RL

l ;
u

2
+ 2−N ; Z̃T

n , Z̃
P
m, Z̃L

l

)
·
∏
n=1

[
−(n− 1)!kT3

]rTn ·
∏
m=1

[
−(m− 1)!kP3

]rPm ∏
l=1

[
−(l − 1)!kL3

]rLl . (42)

To discover the symmetry of the above amplitudes, we need to understand their mathematical
structure in a deeper way. To do it, we follow the mathematical construction in [34] and define

the generating functions associated the D-type Lauricella function F
(K)
D as

f
a,bj
c (s, uj , t, xj) ≡ B (a, c− a)F

(K)
D (a; bj ; c;xj) s

aub11 · · ·ubKK tc, j = 1, · · · ,K, (43)

so that the (s, t) channels string scattering amplitudes can be expressed in term of the generating
functions as

A
(rTn ,rPm,rLl )
st ∼ f

− t
2
−1,RX

j
u
2
+2−N

(
1, kX3 , 1, Z̃X

j

)
, X = T, P, L. (44)

We next define the operators,

Eα = s

∑
j

xj∂xj + s∂s

 , Eαγ = st

∑
j

(1− xj) ∂xj − s∂s

 ,

Eβk = uk (xk∂xk
+ uk∂uk

) , Eβkγ = ukt (− (1− xk) ∂xk
+ uk∂uk

) ,

Eγ = t

∑
j

(1− xj) ∂xj + t∂t − s∂s −
∑
j

uj∂uj

 , Eαβkγ = sukt∂xk
,

Jα = s∂s, Jβk
= uk∂uk

− 1

2
t∂t +

1

2

∑
j ̸=k

uj∂uj , Jγ = t∂t −
1

2

s∂s +
∑
j

uj∂uj + 1

 , (45)

which act on the generating function gives,

Eαf
a,bj
c = (c− a− 1) f

a+1,bj
c , Eαγf

a,bj
c =

∑
j

bj − 1

 f
a+1,bj
c+1 ,

Eβkf
a,bj
c = bkf

a,bk+1
c , Eβkγf

a,bj
c = bkf

a,bk+1
c+1 ,

Eγf
a,bj
c =

c−
∑
j

bj

 f
a,bj
c+1 , Eαβkγf

a,bj
c = bkf

a+1,bk+1
c+1 ,

Jαf
a,bj
c =

(
a− c

2

)
f
a,bj
c , Jβk

f
a,bj
c =

bk −
c

2
+

1

2

∑
j ̸=k

bj

 f
a,bj
c ,

Jγf
a,bj
c =

c− 1

2

a+
∑
j

bj + 1

 f
a,bj
c . (46)
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Finally, we define a set of new operators in the following way,

Eα = E12, Eαγ = E32, Eγ = E31,
Eβkγ = −Ek+3,1, Eαβkγ = −Ek+3,2, Eβk = Ek+3,3,

Jα =
1

2
(E11 − E22) , Jγ =

1

2
(E33 − E11) , Jβk

=
1

2
(Ek+3,k+3 − E33) . (47)

The algebra satisfied by the new operators becomes

[Eij , Ekl] = δjkEil − δliEkj , (48)

which can be identified as sl (K + 3,C) algebra.

5. Conclusion
In this work, I briefly reviewed the hidden symmetry in string theory by studying the string
scattering amplitudes. The four-point bosonic open string scattering amplitude with three
tachyons and an arbitrary massive higher spin string state in both (s, t) and (t, u) channels
have been explicitly calculated and expressed in term of D-type Lauricella function in Eqs.(15)
and (16). The string BCJ relation can be verified easily. We also considered two high energy
limits. In hard limit, the hidden symmetry reduces to the linear relations among the string
amplitude. In Regge limit, the hidden symmetry exhibit to be the recurrence relations of the
string amplitudes. At general energy, we mathematically showed that the hidden symmetry is
associated to sl (K + 3,C) algebra. In the future, we will study this symmetry in more detail
and try to understand its physical picture.
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