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Abstract. We investigate the existence and the orthogonality of the generalized Jack
symmetric functions which play an important role in the AGT relations. We show their
orthogonality by deforming them to the generalized Macdonald symmetric functions.

1. Introduction
In [1], Aldey, Gaiotto and Tachikawa discovered surprising relations (called AGT relations)
between 2D CFTs and 4D gauge theories. Since then, a number of studies on AGT relations
have been carried out by mathematicians and physicists. One of them, a q-analogue of these
relations is given by [2, 3], in which connections between the deformed Virasoro/W algebra and
5D gauge theories are proposed. Moreover in [4], it is conjectured with the help of the Ding-
Iohara-Miki algebra [5, 6] that the matrix elements of the vertex operators with respect to the
generalized Macdonald symmetric functions reproduce the Nekrasov factors of the 5D instanton
partition function. In [7], an M-theoretic derivation of it is given. These generalized Macdonald
functions are the eigenfunctions of a certain operator in the Ding-Iohara-Miki algebra. At last,
the refined topological vertex of Awata-Kanno or Iqbal-Kozcaz-Vafa is deriven from another
representation of Ding-Iohara-Miki algebra [8]. This result show that the correlation functions
of the Ding-Iohara-Miki algebra coincide with the 5D instanton partition functions.

On the other hand, the 4D SU(2) AGT relation as Hubbard-Stratanovich (HS) duality is
proved in [9] with the help of the generalized Jack symmetric functions. (The formula of their
selberg averages is still conjecture.) In their previous paper [10], the integrand of the Dotsenko-
Fateev (DF) representation of the 4-point conformal block is expanded by the ordinary Jack
symmetric polynomials and compared with the Nekrasov partition function. They show that, in
the case β = 1, every term of the DF-integral coincides with the Nekrasov formula parametrized
by pairs of Young diagrams. However at β ̸= 1 it is not working. At this, a generalization of the
Jack symmetric polynomials is introduced in [9] such that each term of DF-integral expanded
by the generalized Jack polynomials corresponds to each term of Nekrasov partition function.
However, the existence of the generalized Jack symmetric functions is unproven. Also, it is a
little hard to give a mathematical, general proof of the orthogonality [11, Section 2] of these
functions, because they have degenerate eigenvalues.

The generalized Macdonald and Jack symmetric functions were introduced independently
and their relation had not been known. However, we found that in the limit q → 1, the
generalized Macdonald symmetric functions are reduced to the generalized Jack symmetric
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functions naturally. This leads the orthogonality and the existence of the generalized Jack
symmetric functions. Since the eigenvalues of the generalized Macdonald symmetric functions
are non-degenerate, we can prove their orthogonality without any other commutative operators,
i.e., higher rank hamiltonians. Moreover we can describe 5D AGT relations as HS duality by
using the generalized Macdonald symmetric functions [12] in the same way of [9].

This letter is organized as follows. In section 2, we give a short summary of the generalized
Macdonald symmetric functions. In section 3, we calculate the limit q → 1 of the operator
whose eigenfunctions are the generalized Macdonald functions and prove the existence and the
orthogonality of the generalized Jack symmetric functions. In section 4 we present several
examples.

2. Generalized Macdonald symmetric function
The generalized Macdonald symmetric functions are described by N kinds of independent

variables {x(i)n | n ∈ N, i = 1, . . . , N}. Hence we use N kinds of power sum symmetric functions

p
(i)
n =

∑
k≥1

(
x
(i)
k

)n
. Using this notation, set

η(i)(z) := exp

( ∞∑
n=1

1− t−n

n
znp(i)n

)
exp

(
−

∞∑
n=1

(1− qn)z−n ∂

∂p
(i)
n

)
, (1)

ξ(i)(z) := exp

(
−

∞∑
n=1

1− t−n

n
(t/q)

n
2 znp(i)n

)
exp

( ∞∑
n=1

(1− qn)(t/q)
n
2 z−n ∂

∂p
(i)
n

)
, (2)

φ
(i)
+ (z) := exp

(
−

∞∑
n=1

(1− qn)(1− tnq−n)(t/q)−
n
4 z−n ∂

∂p
(i)
n

)
, (3)

φ
(i)
− (z) := exp

( ∞∑
n=1

1− t−n

n
(1− tnq−n)(t/q)−

n
4 znp(i)n

)
, (4)

where q and t are independent parameters. Then these operators represent the Ding-Iohara-Miki
algebra [13]. Moreover for complex parameters ui (i = 1, 2, . . . , N), we define

X(z) :=
N∑
i=1

ui Λ̃i, (5)

Λ̃i := φ
(1)
− ((t/q)

1
4 z)φ

(2)
− ((t/q)

3
4 z) · · · φ(i)

− ((t/q)
2i−3

4 z) η(i)((t/q)
i−1
2 z). (6)

The operator X(z) is obtained by so-called the level N representation of Ding-Iohara-Miki
algebra. The deformed WN algebra can be generated by its representation [14]. In the N = 1
case, the coefficient in front of z0 of X(z) = η(z) is Macdonald’s difference operator and its
eigenfunctions are the Macdonald symmetric functions. The generalized Macdonald functions
are the eigenfunctions of the operator

X0 :=

∮
dz

2π
√
−1z

X(z) (7)

in the general N case.
The generalized Macdonald symmetric functions are parametrized by N -tuples of partitions

λ⃗ = (λ(1), . . . , λ(N)), where a partition λ(i) = (λ
(i)
1 , λ

(i)
2 , . . .) is a sequence of non-negative

integers such that λ
(i)
1 ≥ λ

(i)
2 ≥ · · · ≥ 0. For each partition λ and an N -tuple of partitions
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λ⃗ = (λ(1), . . . , λ(N)), we use the symbols : |λ| :=
∑

k≥1 λk, ℓ(λ) := #{k | λk ̸= 0} and

|λ⃗| :=
∑N

i=1 |λ(i)|. We write λ⃗ ≥L µ⃗ (resp. λ⃗ ≥R µ⃗) if and only if |λ⃗| = |µ⃗| and

|λ(N)|+ · · ·+ |λ(j+1)|+
i∑

k=1

λ
(j)
k ≥ |µ(N)|+ · · ·+ |µ(j+1)|+

i∑
k=1

µ
(j)
k (8)

(
resp. |λ(1)|+ · · ·+ |λ(j−1)|+

i∑
k=1

λ
(j)
k ≥ |µ(1)|+ · · ·+ |µ(j−1)|+

i∑
k=1

µ
(j)
k

)
(9)

for all i ≥ 1 and 1 ≤ j ≤ N . Then ”≥L” and ”≥R” are generalized dominace partial orderings on
the N -tuples of partitions. By using these partial orderings we can triangulate the representation
matrix of X0.

Fact 2.1 ([4]). Let m
λ⃗
be the product of monomial symmetric functions

∏N
i=1m

(i)

λ(i) (m
(i)

λ(i) is

an usual monomial symmetric function of variables {x(i)n | n}). Then

X0mλ⃗
=
∑
µ⃗≤Lλ⃗

c
λ⃗µ⃗
mµ⃗, c

λ⃗µ⃗
∈ Q(q

1
2 , t

1
2 , u1, . . . , uN ) (10)

and the eigenvalues are

c
λ⃗λ⃗

=

N∑
i=1

ui ϵλ(i) , ϵλ = 1 + (t− 1)

ℓ(λ)∑
k=1

(qλk − 1)t−k. (11)

Thus we have the following existence theorem.

Fact 2.2 ([4]). For each N -tuple of partitions λ⃗, there exists a unique symmetric function P
λ⃗

satisfying the following two conditions:

P
λ⃗
= m

λ⃗
+
∑
µ⃗<Lλ⃗

d
λ⃗µ⃗

mµ⃗, d
λ⃗µ⃗

∈ Q(q
1
2 , t

1
2 , u1, . . . , uN ); (12)

X0Pλ⃗
= e

λ⃗
P
λ⃗
, e

λ⃗
∈ Q(q

1
2 , t

1
2 , u1, . . . , uN ). (13)

In the case N = 1, the symmetric functions P
λ⃗
are the usual Macdonald symmetric functions.

Hence we call these symmetric functions P
λ⃗
the generalized Macdonald symmetric functions.

The partial ordering ”≥R” gives the similar existence theorem of the dual symmetric functions
P ∗
λ⃗
for the adjoint operator X∗

0 of X0 with respect to Macdonald’s scalar product ⟨−,−⟩q,t. The
scalar product ⟨−,−⟩q,t is defined by

⟨
p
λ⃗
, pµ⃗
⟩
q,t

= δ
λ⃗,µ⃗

N∏
i=1

zλ(i)

ℓ(λ(i))∏
k=1

1− qλ
(i)
k

1− tλ
(i)
k

, zλ(i) :=
∏
k≥1

kmk mk!, (14)

where mk is the number of entries in λ(i) equal to k and p
λ⃗
:=
∏N

i=1 p
(i)

λ(i) :=
∏N

i=1

∏
k≥1 p

(i)

λ
(i)
k

.

When q and t are generic, the eigenvalues e
λ⃗
of the generalized Macdonald symmetric functions

are non-degenerate, that is
λ⃗ ̸= µ⃗ ⇒ e

λ⃗
̸= eµ⃗. (15)

Therefore we have the following orthogonality of them.

Fact 2.3 ([4]). If λ⃗ ̸= µ⃗ then ⟨
P ∗
λ⃗
, Pµ⃗

⟩
q,t

= 0. (16)
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3. Limit to β deformation
In this section, we set ui = qu

′
i (i = 1, . . . , N), t = qβ, q = eℏ and take the limit ℏ → 0 with β fixed

in order to consider the specialization to β-deformation. Since (1− t−n)(1− tnq−n)/n = O(ℏ2)
and (1− t−n)/n, (1− qn) = O(ℏ),∮

dz

2π
√
−1z

Λ̃i(z) =1 +
∞∑
n=1

(
−(1− t−n)(1− qn)

n
p(i)n

∂

∂p
(i)
n

)
(17)

+

i−1∑
k=1

∞∑
n=1

(
−(1− t−n)(1− tnq−n)(1− qn)

n
(t/q)−

(i−k−1)n
2 p(k)n

∂

∂p
(i)
n

)

+
1

2

∑
n,m

(
−(1− t−n)(1− t−m)(1− qn+m)

nm
p(i)n p(i)m

∂

∂p
(i)
n+m

)

+
1

2

∑
n,m

(
(1− t−n−m)(1− qn)(1− qm)

(n+m)
p
(i)
n+m

∂

∂p
(i)
n

∂

∂p
(i)
m

)
+O(ℏ4).

Hence the ℏ expansion is∮
dz

2π
√
−1z

Λ̃i(z) =1 + ℏ2
{
β

∞∑
n=1

n p(i)n

∂

∂p
(i)
n

}
+ ℏ3

{
β(1− β)

i−1∑
k=1

∞∑
i=1

n2p(k)n

∂

∂p
(i)
n

(18)

+
β2

2

∑
n,m

(n+m)p(i)n p(i)m

∂

∂p
(i)
n+m

+
β

2

∑
n,m

nmp
(i)
n+m

∂2

∂p
(i)
n ∂p

(i)
m

+
β(1− β)

2

∞∑
n=1

n2p(i)n

∂

∂p
(i)
n

}
+O(ℏ4).

Thus we get

ui

∮
dz

2π
√
−1z

Λ̃i(z) =1 + u′i ℏ+ ℏ2
{
β

∞∑
n=1

n p(i)n

∂

∂p
(i)
n

+
1

2
u′2i

}
(19)

+ ℏ3
{
βH(i)

β + β
i−1∑
k=1

H(i,k)
β +

u′3i
6

}
+O(ℏ4),

where

H(i)
β :=

1

2

∑
n,m

(
β(n+m)p(i)n p(i)m

∂

∂p
(i)
n+m

+ nmp
(i)
n+m

∂2

∂p
(i)
n ∂p

(i)
m

)
+

∞∑
n=1

(
u′i +

1− β

2
n

)
np(i)n

∂

∂p
(i)
n

,

(20)

H(i,k)
β := (1− β)

∞∑
n=1

n2p(k)n

∂

∂p
(i)
n

. (21)

For k = 0, 1, 2, . . . , we define operators Hk by

X0 =:

∞∑
k=0

ℏkHk. (22)
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All homogeneous symmetric functions of the same degree belong to the same eigenspace of H0,
H1 and H2. Even without the operators H0, H1 and H2, the eigenfunctions of X0 do not change.
In addition, we have

lim
ℏ→0

(
X0 − (H0 + ℏH1 + ℏ2H2)

(t− 1)(q − 1)2

)
= Hβ +

1

6β

N∑
i=1

u′3i , (23)

Hβ :=
N∑
i=1

H(i)
β +

∑
i>j

H(i,j)
β . (24)

Consequently the limit q → 1 of the generalized Macdonald functions are eigenfunctions of

the differential operator Hβ. Hβ plus the momentum (β − 1)
∑N

i=1

∑∞
n=1 np

(i)
n

∂

∂p
(i)
n

corresponds

to the differential operator of [9, 11], the eigenfunctions of which are called generalized Jack
symmetric functions.

As the Fact 2.1, we can triangulate Hβ similarly. Moreover if λ⃗ ≥L µ⃗ and β is generic,
then e′

λ⃗
̸= e′µ⃗. (e′

λ⃗
, e′µ⃗ are eigenvalues of Hβ.) Therefore we get the existence theorem of the

generalized Jack symmetric functions.

Proposition 3.1. There exists a unique symmetric function J
λ⃗
satisfying the following two

conditions:

J
λ⃗
= m

λ⃗
+
∑
µ⃗<Lλ⃗

d′
λ⃗µ⃗

mµ⃗, d′
λ⃗µ⃗

∈ Q(β, u′1, . . . , u
′
N ); (25)

HβJλ⃗ = e′
λ⃗
J
λ⃗
, e′

λ⃗
∈ Q(β, u′1, . . . , u

′
N ). (26)

From the above argument and the uniqueness in this proposition we get the following
important result.

Proposition 3.2. The limit of the generalized Macdonald symmetric functions P
λ⃗

to β-
deformation coincide with the generalized Jack symmetric functions J

λ⃗
. That is

P
λ⃗

−→
ℏ→0,

ui=qu
′
i , t=qβ , q=eℏ

J
λ⃗
. (27)

Remark 3.3. For the dual functions P ∗
λ⃗
and J∗

λ⃗
, the similar proposition holds.

By Fact 2.3, Proposition 3.2 and the fact that the scalar product ⟨−,−⟩q,t reduces to the

scalar product ⟨−,−⟩β which is defined by

⟨
p
λ⃗
, pµ⃗
⟩
β
= δ

λ⃗,µ⃗

N∏
i=1

zλ(i)β−ℓ(λ(i)), (28)

we obtain the orthogonality of the generalized Jack symmetric functions.

Proposition 3.4. If λ⃗ ̸= µ⃗, then ⟨
J∗
λ⃗
, Jµ⃗

⟩
β
= 0. (29)

By this proposition, we can prove the chauchy formula of generalized Jack symmetric
functions in the usual way. For example, in the N = 2 case, we have

∑
λ⃗

J
λ⃗
(x(1), x(4)) J∗

λ⃗
(x(2), x(3))

v
λ⃗

= exp

β
∑
n≥1

1

n
p(1)n p(2)n

 exp

β
∑
n≥1

1

n
p(3)n p(4)n

 , (30)

where v
λ⃗
:= ⟨J∗

λ⃗
, J

λ⃗
⟩β. This is the essential formula used in the scenario of proof of the AGT

conjecture [9].
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4. Example
We give examples of Proposition 3.2 in the case N = 2. The generalized Macdonald symmetric
functions of level 1 and 2 have the forms:(

P(0),(1)

P(1),(0)

)
= M1

q,t

(
m(0),(1)

m(1),(0)

)
, M1

q,t :=

(
1 (t/q)

1
2

(t−q)u2

t(u1−u2)

0 1

)
, (31)


P(0),(2)

P(0),(1,1)

P(1),(1)

P(2),(0)

P(1,1),(0)

 = M2
q,t


m(0),(2)

m(0),(1,1)

m(1),(1)

m(2),(0)

m(1,1),(0)

 , M2
q,t:= (32)



1
(1+q)(t−1)

qt−1
(t/q)

− 1
2 (1+q)(q−t)(t−1)u2

(1−qt)(u1−qu2)
(q−t)((1−q2)tu1−q(t2−q(1+q)t+q)u2)u2

qt(qt−1)(u1−u2)(u1−qu2)
(1+q)(q−t)(t−1)((q−1)tu1+q(q−t)u2)u2

qt(qt−1)(u1−u2)(u1−qu2)

0 1 (t/q)
1
2

(t−q)u2
t(tu1−u2)

(q−t)u2
q(tu1−u2)

(q−t)(qu2−t((t−1)u1+u2))u2
qt(u1−u2)(tu1−u2)

0 0 1 (t/q)
1
2

(t−q)u2
t(qu1−u2)

(t/q)
1
2

(q−t)((1+q+(q−1)t)u1−2tu2)
t(qu1−u2)(−u1+tu2)

0 0 0 1
(1+q)(t−1)

qt−1
0 0 0 0 1



Also the generalized Jack symmetric functions have the forms:(
J(0),(1)
J(1),(0)

)
= M1

β

(
m(0),(1)

m(1),(0)

)
, M1

β :=

(
1 1−β

−u′
1+u′

2

0 1

)
, (33)


J(0),(2)
J(0),(1,1)
J(1),(1)
J(2),(0)
J(1,1),(0)

 = M2
β


m(0),(2)

m(0),(1,1)

m(1),(1)

m(2),(0)

m(1,1),(0)

 , (34)

M2
β :=



1 2β
1+β

2β(1−β)
(1+β)(1−u′

1+u′
2)

(1−β)(2+β−β2−2u′
1+2u′

2)
(1+β)(u′

1−u′
2)(−1+u′

1−u′
2)

2β(2−3β+β2)
(1+β)(u′

1−u′
2)(−1+u′

1−u′
2)

0 1 1−β
−β−u′

1+u′
2

1−β
β+u′

1−u′
2

−1+3β−2β2

(u′
1−u′

2)(−β−u′
1+u′

2)

0 0 1 1−β
−1−u′

1+u′
2

2(1−β)(−1+β−u′
1+u′

2)
(−1−u′

1+u′
2)(β−u′

1+u′
2)

0 0 0 1 2β
1+β

0 0 0 0 1


. (35)

If we take the limit q → 1 of M i
q,t, then M i

β appears.
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