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Abstract. The duality between the N -particle sector of quantum nonlinear Schrödinger
equation and the 2D N = (2, 2)∗ U(N) topological Yang-Mills-Higgs theory was found by
Gerasimov and Shatashvili some time ago. At the large N and large ’t Hooft coupling limit, the
gravity dual of the 2D N = (2, 2)∗ U(N) topological Yang-Mills-Higgs theory can be constructed.
Consequently, as a first example, one can formulate a triangle relation between integrable model,
gauge theory and gravity. We present the results of the gravity dual in this paper, and make
some checks at classical level between the gravity dual and the nonlinear Schrödinger equation.
This paper is based on the talk given by the author at the 24th International Conference on
Integrable Systems and Quantum Symmetries, and more details can be found in Ref. [1].

1. Introduction
Many interesting and profound relations between integrable models and gauge theories have
been revealed in recent years [2, 3, 4]. The integrable models are defined in (1+1)D, and they
can be nonlinear partial differential equations or lattice spin models. The corresponding 2D
gauge theories have N = (2, 2)∗ supersymmetry.

Among these relations, the simplest example is the one between the nonlinear Schrödinger
equation and the 2D N = (2, 2)∗ U(N) topological Yang-Mills-Higgs theory found by Gerasimov
and Shatashvili [5, 6]. From the wave function of the 2D N = (2, 2)∗ U(N) topological Yang-
Mills-Higgs theory one can reproduce the wave function of the quantum nonlinear Schrödinger
equation in the N -particle sector.

The 2D N = (2, 2)∗ U(N) Yang-Mills-Higgs theory was constructed in Ref. [7]. It can
be viewed as the dimensional reduction of 4D topologically twisted N = 2 U(N) super
Yang-Mills theory with a deformation term, which breaks 8 supercharges into 4 supercharges.
Alternatively, it can also be viewed as the 2D N = (2, 2)∗ U(N) super Yang-Mills theory with
some supersymmetry exact terms, which do not modify the theory at quantum level. Hence, the
2D N = (2, 2)∗ U(N) topological Yang-Mills-Higgs theory is equivalent to the 2D N = (2, 2)∗

U(N) super Yang-Mills theory, and we can study the latter one instead.
Based on the principle of gauge/gravity correspondence, we can construct the gravity dual

of the 2D N = (2, 2)∗ U(N) super Yang-Mills theory in the large N and large ’t Hooft coupling
limit. Together with the relation between the nonlinear Schrödinger equation and the 2D
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N = (2, 2)∗ U(N) topological Yang-Mills-Higgs theory, now we have a triangle relation among
three theories (see Fig. 1).

2D Topological 
YMH

Gravity Dual

(1+1)D 
Quantum NLS

Figure 1. The relation between different theories

By setting up this triangle relation, in principle we can study the integrability of the nonlinear
Schrödinger equation on the gravity side, and at the same time study some properties of the
gravity on the integrable model side. For the moment, we can first take the classical limit in
both the gravity dual and the nonlinear Schrödinger equation, and we can immediately find the
correspondence between N D-branes in the supergravity and N solitons in the classical nonlinear
Schrödinger equation. The correspondence at quantum level will be investigated in the future.

This paper is based on the talk given by the author at the 24th International Conference
on Integrable Systems and Quantum Symmetries, and more details can be found in Ref. [1].
The paper is organized as follows. In Section 2 the 2D N = (2, 2)∗ U(N) topological Yang-
Mills-Higgs theory, the nonlinear Schrödinger equation and the relation between them will be
reviewed. In Section 3, we discuss the construction of the gravity dual of the 2D N = (2, 2)∗

U(N) super Yang-Mills theory, and the triangle relation demonstrated in Fig. 1 will be set up.
Finally, in Section 4 the prospect for the future research will be discussed.

2. Gerasimov-Shatashvili Duality
In this section, we briefly review the 2D N = (2, 2)∗ U(N) topological Yang-Mills-Higgs theory,
the nonlinear Schrödinger equation and the relation between them.

2.1. 2D Topological Yang-Mills-Higgs Theory
The 2D N = (2, 2)∗ U(N) topological Yang-Mills-Higgs theory was first constructed in Ref. [7].
It is given by the path integral

ZYMH(Σh) =
1

Vol(GΣh
)

∫
Dϕ0Dϕ±DADΦDψADψΦDχ± e

S , (1)

where
S = S0 + S1 (2)
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with

S0 =
1

2π

∫
Σh

d2z

[
Tr (iϕ0(F (A)− Φ ∧ Φ)− cΦ ∧ ∗Φ) + ϕ+∇(1,0)

A Φ(0,1)

+ ϕ−∇(0,1)
A Φ(1,0)

]
, (3)

S1 =
1

2π

∫
Σh

d2zTr

[
1

2
ψA ∧ ψA +

1

2
ψΦ ∧ ψΦ + χ+

[
ψ1,0
A , Φ(0,1)

]
+ χ−

[
ψ

(0,1)
A , Φ(1,0)

]
+ χ+∇(1,0)

A ψ
(0,1)
Φ + χ−∇(0,1)

A ψ
(1,0)
Φ

)
. (4)

In the absence of the deformation term cTr(Φ ∧ ∗Φ) the theory preserves N = (4, 4)
supersymmetry. For generic values of c 6= 0 the theory preserves N = (2, 2) supersymmetry,
and the N = (2, 2) supersymmetry transformations are given by

QA = iψA , QψA = −Dϕ0 , Qϕ0 = 0 , (5)

QΦ = iψΦ , (6)

Qψ
(1,0)
Φ = [Φ(1,0), ϕ0] + cΦ(1,0) , Qψ

(0,1)
Φ = [Φ(0,1), ϕ0] + cΦ(0,1) , (7)

Qχ± = iϕ± , Qϕ± = [χ±, ϕ0]± cχ± . (8)

This theory can also be understood as the dimensional reduction of the 4D topologically
twisted N = 2 U(N) super Yang-Mills theory with a deformation term. The details will be
discussed in Ref. [1].

From the supersymmetric transformations (5) ∼ (8), one can show that the 2D N = (2, 2)∗

Yang-Mills-Higgs theory can be written as the 2D N = (2, 2)∗ super Yang-Mills theory with a
supersymmetry exact deformation as follows:

SYMH = SYM +

[
Q,

∫
Σh

d2zTr

(
1

2
Φ ∧ ψΦ + χ+∇(1,0)

A Φ(0,1) + χ−∇(0,1)
A Φ(1,0)

)]
. (9)

In Ref. [5] the supersymmetry exact deformation term was changed without modifying the theory
at quantum level. Based on this fact, in the following, when we construct the gravity dual of the
2D N = (2, 2)∗ Yang-Mills-Higgs theory, we will consider the gravity dual of the 2D N = (2, 2)∗

super Yang-Mills theory instead.

2.2. Nonlinear Schrödinger Equation
The (1+1)D nonlinear Schrödinger equation is

i∂tφ = −1

2
∂2
xφ+ 2c(φ∗φ)φ . (10)

The Hamiltonian of the theory is given by

H =

∫
dx

[
1

2

∂φ∗

∂x

∂φ

∂x
+ c (φ∗φ)2

]
, (11)

where the field φ has the Poisson structure

{φ∗(x), φ(x′)} = δ(x− x′) . (12)
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In (1+1)D, this theory is integrable both at the classical level and at the quantum level.
For the (1+1)D quantum nonlinear Schrödinger equation, if we consider the N -particle sector

in the domain x1 ≤ x2 ≤ · · · ≤ xN , the N -particle wave function satisfies the equation(
−1

2

N∑
i=1

∂2

∂x2
i

)
Φλ(x) = 2π2

(
N∑
i=1

λ2
i

)
Φλ(x) , (13)

where λi denotes the momentum of the i-th particle. The normalized wave function is given by

Φλ(x) =
∑
ω∈W

(−1)l(w)
∏
i<j

(
λω(i) − λω(j) + ic sgn(xi − xj)
λω(i) − λω(j) − ic sgn(xi − xj)

) 1
2

exp

(
2πi

∑
i

λω(k) xk

)
, (14)

where λi obey the Bethe Ansatz equation:

e2πiλj
∏
k 6=j

λk − λj − ic
λk − λj + ic

= 1 , j = 1, · · · , N. (15)

2.3. The Duality
Using the technique of cohomological localization, one can compute the partition function of the
2D N = (2, 2)∗ U(N) topological Yang-Mills-Higgs theory exactly:

ZYMH(Σh) = e(1−h) a(c)
∑
λ∈RN

D2−2h
λ e−

∑∞
k=1 tk pk(λ) , (16)

where pk(λ) is defined as

1

(2π)k
Trϕk Ψλ(x1, · · · , xN ) = pk(λ) Ψλ(x1, · · · , xN ) , (17)

and the factor Dλ is given by

Dλ = µ(λ)−1/2
∏
i<j

(λi − λj)
(
c2 + (λi − λj)2

)1/2
, (18)

while RN denotes the set of λi’s satisfying the same Bethe Ansatz equation:

e2πiλj
∏
k 6=j

λk − λj + ic

λk − λj − ic
= 1 , k = 1, · · · , N. (19)

From this analysis, we see the equivalence between the wave function of the 2DN = (2, 2)∗ U(N)
topological Yang-Mills-Higgs theory and the wave function of the (1+1)D quantum nonlinear
Schrödinger equation in the N -particle sector. Hence, the duality between these two theories at
quantum level is implied.

3. Gravity Dual
Now we turn to the construction of the gravity dual of the 2DN = (2, 2)∗ U(N) super Yang-Mills
theory. We follow the same way how the gravity dual of 4D N = 2∗ super Yang-Mills theory was
constructed [8, 9]. In that case, one can start with the 5D N = 8 gauged supergravity, which is a
consistent truncation of the 10D type IIB supergravity on AdS5×S5. After turning on additional
scalar fields and choosing an appropriate scalar potential, one can break the supersymmetry from
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N = 4 to N = 2, which corresponds to a mass deformation on the field theory side. Finally, the
solution in the 5D N = 8 gauged supergravity can be uplifted to 10D.

In our case, the gravity dual of the 2D N = (4, 4) U(N) super Yang-Mills theory was
constructed in Ref. [10] using the brane construction, and it was shown that by changing variables
the solutions of the gravity dual can also be obtained from the 5D N = 2 gauged supergravity,
which is a further consistent truncation of the 5D N = 8 gauged supergravity. Therefore,
following the same logic of Ref. [8, 9], we can turn on an additional scalar field and choose an
appropriate scalar potential to break the supersymmetry from N = (4, 4) to N = (2, 2) in the
5D N = 2 gauged supergravity. After that, the 5D gravity solution can also be uplifted to 10D
and rewritten into an expression, from which the brane construction is more transparent.

3.1. Gravity Dual of 2D N = (4, 4) Super Yang-Mills Theory
As explained in the beginning of this section, to construct the gravity of the 2D N = (2, 2)∗

U(N) super Yang-Mills theory, we start with the known gravity dual of the 2D N = (4, 4)
U(N) super Yang-Mills theory, which was constructed in Ref. [10]. Let us briefly review the
construction in this subsection.

To realize the N = (4, 4) supersymmetry, one considers a D3-brane wrapped on the 2-cycle
of a CY 2-fold, which can be seen from the following table:

R1,1 S2 N2 R4

D3 − − ○ ○ · · · · · ·

Locally, the CY 2-fold is S2 ×N2. From the brane construction, one can propose an Ansatz of
the metric in 10 type IIB supergravity:

ds2 = H−
1
2

[
dx2

1,1 +
z

m2

(
dθ2 + sin2θ (dφ)2

)]
+H

1
2

[
1

z
dσ2 +

σ2

z
(dψ + cosθ dφ)2 + dρ2 + ρ2dΩ2

3

]
, (20)

where
0 ≤ θ ≤ π , 0 ≤ φ, ψ < 2π , 0 ≤ ρ, σ <∞ . (21)

In addition, the RR 5-form in the 10D type IIB supergravity is given by

F5 = F5 + ∗F5 , (22)

where F5 = dC4 with
C4 = g(ρ, σ)ω3 ∧ (dψ + cosθ dφ) (23)

and ω3 is the volume element of the 3-sphere, i.e.,

ω3 = sin2α1 sinα2 dα1 ∧ dα2 ∧ α3 . (24)

The constant m in the metric (20) is fixed by the quantization condition of the RR 5-form F5:

1

2κ2
10

∫
M5

F5 = Nc T3 (25)

with

2κ2
10 = (2π)7 g2

s (α′)4 , T3 =
1

(2π)3 gs (α′)2
. (26)
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After some analyses, one finds that the constant m is fixed by

1

m2
=
√

4πgsNcα
′ , (27)

where gs and α′ are the string coupling constant and the Regge slope respectively.
From the metric (20) and the flux (22), one can write down the BPS equations and try to

solve them. It turns out that the BPS equations can be solved by using the results from the 5D
N = 2 gauged supergravity discussed in Ref. [11]. This is due to the fact that the metric (20)
can also be constructed from the 5D N = 2 gauged supergravity.

The bosonic part of the 5D N = 2 gauged supergravity is given by

L = R− 1

2
(∂µφ1)2 − 1

2
(∂µφ2)2 + 4

3∑
i=1

eαi − 1

4

3∑
i=1

e2αi F iµνF
i,µν +

1

4
εµναβρF 1

µνF
2
αβA

3
ρ , (28)

where

α1 =
φ1√

6
+
φ2√

2
, α2 =

φ1√
6
− φ2√

2
, α3 = − 2√

6
φ1 . (29)

For the 5D gauged supergravity compactified on a surface H2, there is the following condition:

a1 + a2 + a3 = 1 . (30)

It was explained in Ref. [11] that one can obtain the solution for the compactification on S2 by
replacing θ → iθ.

By choosing aI = (0, 0, 1), it was constructed in Ref. [10] the gravity solution with N = (4, 4)
supersymmetry in the 5D N = 2 gauged supergravity:

ds2
5 = e2f(r)

(
dx2

1,1 + dr2
)

+
e2g(r)

m2

[
dθ2 + sin2θ (dφ)2

]
. (31)

The gauge fields are chosen to be

A1 = 0 , A2 = 0 , A3 =
1

m
cosθ dφ . (32)

This solution can be uplifted to 10D in the following way:

ds2
10 =

√
∆ds2

5 +
3

m2
√

∆

3∑
i=1

Xi

[
dµ2

i + µ2
i

(
dφi +mAi

)2]
, (33)

where

∆ =

3∑
i=1

Xiµ2
i , (34)

and
3∑
i=1

µ2
i = 1 . (35)

One can parametrize µi’s as follows:

µ1 = cosθ̃ sinψ̃ , µ2 = cosθ̃ cosψ̃ , µ3 = sinθ̃ , (36)

where 0 ≤ θ̃ ≤ π/2 and 0 ≤ ψ̃ ≤ 2π. The quantities Xi and Xi are defined by

Xi =
1

3

(
eϕ, eϕ, e−2ϕ

)
, Xi =

(
e−ϕ, e−ϕ, e2ϕ

)
, (37)

It was shown in Ref. [10] that indeed the metric (33) can be rewritten into the expression of the
metric (20) discussed before by changing variables.
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3.2. Gravity Dual of 2D N = (2, 2)∗ Super Yang-Mills Theory
Let us consider the gravity dual of the 2D N = (2, 2)∗ U(N) super Yang-Mills theory. As
mentioned in the beginning of this section, we can start with the the gravity dual of the 2D
N = (4, 4) U(N) super Yang-Mills theory discussed in the previous section, and break the
supersymmetry from N = (4, 4) to N = (2, 2) in the framework of the 5D N = 2 gauged
supergravity [11]. To break supercharges in the 5D N = 2 gauged supergravity, one can simply
choose the parameters aI to be

aI = (c̃, 0, 1− c̃) (38)

with 0 ≤ c̃ < 1. When c̃ = 0, it returns to the case analyzed in the previous subsection, which
preserves N = (4, 4) supersymmetry. When 0 < c̃ < 1, the gravity solution preserves N = (2, 2)
supersymmetry. The gauge fields now become

A1 =
c̃

m
cosθ dφ , A2 = 0 , A3 =

1− c̃
m

cosθ dφ . (39)

Similar to Ref. [11], one can also solve the BPS equations near the boundary r = 0 (see
Ref. [1] for more details). The asymptotic solutions are

g(r) = −log(r) +
7

36
r2 + · · · , (40)

f(r) = −log(r)− 1

18
r2 + · · · , (41)

φ1(r) = −1− 3a3√
6

r2 log(r) + · · · , (42)

φ2(r) = −a1 − a2√
2

r2 log(r) + · · · , (43)

which suggest that the scalar φ2 corresponds to the dimension-2 operator cTr(Φ∧∗Φ) in the field
theory. In the absense of this mass deformation, the field theory has N = (4, 4) supersymmetry,
and the scalar φ2 is turned off on the gravity side. When the mass deformation is turned on,
the scalar φ2 should also be turned on correspondingly. Hence, at least for small values of c and
c̃, there should be

c ∝ c̃ . (44)

Based on our previous analyses, the 10D metric preserving N = (2, 2)∗ supersymmetry can
be given in the following way:

ds2
10 =

√
∆

[
e2f (dx2

1,1 + dr2) +
e2g

m2

(
dθ2 + sin2θ (dφ)2

)]
+

1

m2
√

∆

[
eϕ1+ϕ2dµ2

1 + eϕ1−ϕ2dµ2
2 + e−ϕ2dµ2

3 + eϕ1+ϕ2cos2θ̃ sin2ψ̃
(
dφ1 + c̃ cosθ dφ

)2
+ eϕ1−ϕ2cos2θ̃ cos2ψ̃(dφ2)2 + e−2ϕ1sin2θ̃

(
dφ3 + (1− c̃) cosθ dφ

)2 ]
, (45)

where ϕ1 = φ1/
√

6, ϕ2 = φ2/
√

2, and ∆ has the same definition as Eq. (34).
In principle, this 10D metric (45) can be rewritten into the form similar to the one given by

Eq. (20), from which the brane construction is more transparent. However, for generic values
of c̃, the explicit form of the metric can be very complicated. To simplify our discussions, let
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us consider a special case c̃ = 1/2. For this case, the metric (45) can be rewritten into a form
similar to Eq. (20) by changing variables (for more details see Ref. [1]):

ds2 = H−
1
2

[
dx2

1,1 +
z

m2

(
dθ2 + sin2θ (dφ)2

)]
+H

1
2

[
1√
z
dσ2 +

σ2

√
z

(
dψ̃2 + sin2ψ̃

(
dφ3 +

1

2
cosθ dφ

)2

+ cos2ψ̃

(
dφ1 +

1

2
cosθ dφ

)2
)

+ dρ2 + ρ2dψ2

]
. (46)

From this metric one can read off that the brane construction for this case (c̃ = 1/2) becomes

R1,1 S2 N4 R2

D3 − − ○ ○ · · · · · ·
Hence, now the solutions describes a D3-brane wrapped on the 2-cycle of a CY 3-fold, which is
locally S2×N4. This configuration realizes N = (2, 2) supersymmetry. By turning on the mass
deformation on the field theory side, we see a change of topology on the gravity side, i.e., from
a CY 2-fold at c̃ = 0 becomes a CY 3-fold at c̃ 6= 0, and consequently the supersymmetry is
broken from N = (4, 4) to N = (2, 2).

To have the complete gravity solution in 10D type IIB supergravity, we still need to specify
the RR 5-form F5. It is given by

F5 = F5 + ∗F5 , (47)

where

F5 =
3∑
i=1

[
2Xi(Xiµ2

i −∆)ε5 +
1

2(Xi)2
d(µ2

i )
(
(dφi +Ai) ∧ ∗5F i +Xi ∗5 dXi

)]
, (48)

and ε5 and ∗5 are the volume form of ds2
5 and the Hodge dual in ds5 respectively, while F i = dAi

are the field strengths of the gauge fields given by Eq. (39). Similar to the N = (4, 4) case, the
quantization condition of F5 will fix the constant m as in Eq. (27).

There is a subtle point that we would like to emphasize. In the original construction in
Ref. [11], the gravity solution has a 2-form field strength, which should satisfy a quantization
condition when integrated on the Riemann surface. This condition imposes the constraint on the
parameters aI ’s that they should have rational instead of real values. However, in our discussion
above, we only have a flux quantization condition on the 5-form F5, which fixes the constant m,
hence, the aI ’s can be real in our solutions.

3.3. The Triangle Relation
After finding the gravity dual, we have set up a triangle relation among the N -particle sector
of quantum nonlinear Schrödinger equation, the 2D N = (2, 2)∗ U(N) topological Yang-Mills-
Higgs theory and their gravity dual. This relation should hold at quantum level in the limit
N →∞, g2

YM → 0 and g2
YMN →∞. As a first check, let us take the classical limit ~→ 0.

It was known in the literature that when N → ∞ the N -particle sector of the quantum
nonlinear Schrödinger equation with an attractive potential becomes the N -soliton sector of
the classical nonlinear Schrödinger equation. Therefore, in the classical limit we can identify
the N -solitons in the nonlinear Schrödinger equation with the N D3-branes from the brane
construction on the gravity side, while N becomes the rank of the gauge group on the gauge
theory side.
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4. Discussions
In this paper, we illustrate the way of setting up a triangle relation between three theories by
finding the gravity dual of the 2D N = (2, 2)∗ U(N) topological Yang-Mills-Higgs theory. More
details of this approach can be found in Ref. [1]. We believe this result opens up a new direction
of research, and a lot of interesting questions should be addressed and clarified. Hopefully, it
can provide some deep insights into the connections of integrable models, gauge theories and
gravities.

An immediate generalization is to add matters in the fundamental representation of the gauge
group, i.e., add flavors in the gravity dual. This will allow us to find the gravity dual of the more
general duality found by Nekrasov and Shatashvili, and consequently to study the more general
triangle relation. Another related question is to study the integrability on the gravity side both
at the classical level and at the quantum level. We would like to investigate these perspectives
in the future research.

A little unexpected relation comes from the boson/vortex duality discussed in Refs. [12, 13]
and recently revisited in Refs. [14, 15]. Using this duality, one can show that in (3+1)D nonlinear
Schrödinger equatoin can be mapped into an effective string theory. Correspondingly, different
solutions to the (3+1)D nonlinear Schrödinger equatoin (vortex lines, vortex rings, dark solitons)
can be mapped into some configurations in the effective string theory (open string, closed strings,
D-branes). To relate this duality to the (1+1)D nonlinear Schrödinger equatoin, which is an
integrable model, one can either perform a dimensional reduction or apply the duality map
directly in (1+1)D. In this way a lot of interesting features emerge, and many apparently different
theories are related in a larger duality web. We would like to present this work elsewhere.

Acknowledgements
We would like to thank Daniel Areán, André Coimbra, Heng-Yu Chen, Ilmar Gahramanov,
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