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Abstract. The original Bondi−Metzner−Sachs group B is the common asymptotic symmetry
group of all asymptotically flat Lorentzian 4−dim space−times. As such, B is the best candidate
for the universal symmetry group of General Relativity (G.R.). In 1973, with this motivation,
P. J. McCarthy classified all relativistic B−invariant systems in terms of strongly continuous
irreducible unitary representations (IRS) of B. Here, we construct the IRS of B(2, 1), the
analogue of B, in 3 space−time dimensions. The IRS are induced from ‘little groups’ which are
compact. The finite ‘little groups’ are cyclic groups of even order. The inducing construction is
exhaustive notwithstanding the fact that B(2, 1) is not locally compact in the employed Hilbert
topology.

1. Introduction
The Bondi−Metzner−Sachs (BMS) group B is the common asymptotic group of all curved real
Lorentzian space−times which are asymptotically flat in future null directions [1, 2], and is the
best candidate for the universal symmetry group of G.R..

In 1939 Wigner laid the foundations of special relativistic quantum mechanics [3] and
relativistic quantum field theory by constructing the Hilbert space IRS of the (universal cover)
of the Poincare group P .

The universal property of B for G.R. makes it reasonable to attempt to lay a similarly firm
foundation for quantum gravity by following through the analogue of Wigner’s programme with
B replacing P . Some years ago McCarthy constructed explicitly [4, 5, 6, 7, 8, 9, 10, 11] the IRS
of B for exactly this purpose. This work was based on G.W.Mackey’s pioneering work on group
representations [3, 12, 13, 14, 15]; in particular McCarthy’s work extended G.W.Mackey’s work
to the relevant infinite−dimensional case.

It is difficult to overemphasize the importance of Piard’s results [16, 17] who soon afterwards
proved that all the IRS of B, when this is equipped with the Hibert topology, are derivable by
the inducing construction. This proves the exhaustivity of McCarthy’s list of representations
and renders his results even more important.

However, in quantum gravity, complexified or euclidean versions of G.R. are frequently
considered and the question arises: Are there similar symmetry groups for these versions of
the theory? McCarthy constructed [18], in abstract form, all possible analogues of B, both
real and in any signature, or complex, with all possible notions of asymptotic flatness ‘near
infinity’. There are, in fact, forty−one such groups. These abstract constructions were given
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in a quantum setting; the paper was concerned with finding the IRS of these groups in Hilbert
spaces (especially for the complexification CB of B itself). It has been argued [19, 20, 21, 22]
that these Hilbert space representations are related to elementary particles and quantum gravity
(via gravitational instantons).

Here, we follow this programme for 3−dim G.R. and construct in the Hilbert topology the IRS
of B(2, 1), the analogue of B in three space−time dimensions. It is proved that all IRS of B(2, 1)
are induced from IRS of compact ‘little groups’. It follows that some IRS of B(2, 1) are controlled
by IRS of the finite symmetry groups of regular polygons in ordinary euclidean 2−space. It is
proved that all IRS of B(2, 1) are induced by the IRS of its little groups notwithstanding the
fact that B(2, 1) is not locally compact in the employed Hilbert topology. The paper closes with
the explicit construction of the IRS of B(2, 1).

We turn now to the study of to B(2, 1), the analogue of B in three space−time dimensions.

1.1. The group B2,1(N+)
Recall that the 2 + 1 Minkowski space is the vector space R3 of row vectors with 3 real
components, with the inner product defined as follows. Let x, y ∈ R3 have components xµ

and yµ respectively, where µ = 0, 1, 2. Define the inner product x.y between x and y by

x.y = x0y0 − x1y1 − x2y2. (1)

Then the 2 + 1 Minkowski space, sometimes written R2,1, is just R3 with this inner product.
The “2,1” refers to the one plus and two minus signs in the inner product. Let SO(2, 1) be the
(connected component of the identity element of the) group of linear transformations preserving
the inner product. Matrices Λ ∈ SO(2, 1) are taken as acting by matrix multiplication from
the right, x 7−→ xΛ, on row vectors x ∈ R2,1.

The future null cone N+ ⊂ R2,1 is just the set of nonzero vectors with zero length and x0 > 0:

N+ =
{
x ∈ R2,1|x.x = 0, x0 > 0

}
. (2)

Let R∗
+ denote the multiplicative group of all positive real numbers. Obviously, if x ∈ N+, then

tx ∈ N+ for any t ∈ R∗
+. Let F1(N

+) denote the vector space (under pointwise addition) of all
functions f : N+ → R satisfying the homogeneity condition

f(tx) = tf(x) (3)

for all x ∈ N+ and t ∈ R∗
+. Define a representation T of SO(2, 1) on F1(N

+) by setting, for
each x ∈ N+ and Λ ∈ SO(2, 1),

(T (Λ)f)(x) = f(xΛ). (4)

Now let B2,1(N+) be the semi−direct product

B2,1(N+) = F1(N
+)oT SO(2, 1). (5)

That is to say, B2,1(N+) is, as a set, just the product F1(N
+) × SO(2, 1), and the group

multiplication law for pairs is

(f1,Λ1)(f2,Λ2) = (f1 + T (Λ1)f2,Λ1Λ2). (6)
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1.2. The double cover B2,1(N+)c
Let SL(2, R) be the group of all real 2×2 matrices with determinant one. SL(2, R) is sometimes
denoted by G below. Let Ms(2, R) be the set of all 2× 2 symmetric real matrices. We define a
right action of G on Ms(2, R) by Ms(2, R)×G→ Ms(2, R) with

(m, g) 7→ g⊤mg, (7)

where the superscript ⊤ means transpose. Clearly any element µ ∈ Ms(2, R) can be
parameterized as follows:

µ =

[
xo − x1 x2

x2 xo + x1

]
where xo, x1, x2 ∈ R. We now consider the map b : R3 → Ms(2, R) defined by

b(x) =

[
xo − x1 x2

x2 xo + x1

]
, (8)

where the xµ are the components of x ∈ R3. This map is a linear bijection, so the right action
of G on Ms(2, R) induces a linear right action of G on R3. Since

det(b(x)) = x · x (9)

and the G action preserves determinants (indeed det g = 1) in Ms(2, R), G acts as
transformations from SO(2, 1). In fact, this construction gives an homomorphism

γ : G→ SO(2, 1) (10)

which is onto, and has kernel Z2 = {Id,−Id} in G, Id denoting the identity element of G. Thus
γ identifies G as the double cover of SO(2, 1)

G = SO(2, 1)c. (11)

Therefore, the double cover of the group B2,1(N+), given in (5), has the form

B2,1(N+)c = F1(N
+)oT SL(2, R). (12)

Strictly speaking, “T” should read “Tγ”, but the notation is simpler as above.

1.3. The group B(2, 1)
So far, the supertranslation space F1(N

+) has been defined as a space of truly arbitrary
homogeneous functions of degree one. This has been merely for clarity; for physical applications,
it is necessary to give this space additional structure. For reasons discussed in detail in McCarthy
[18], we now give a new realization of B2,1(N+)c where the supertranslation space is restricted to
be the separable Hilbert space L2(P1(R), λ,R) of real−valued functions defined on P1(R) ≃ S1;
functions square integrable with respect to the standard normalized (Lesbegue) measure λ on
P1(R) ≃ S1; P1(R) ≡ S1/Z2 is the one−dimensional real projective space (the circle quotient
the antipodal map).

In particular in [23] the following Theorem is proved:

Theorem 1.1 The group B2,1(N+)c can be realised as

B(2, 1) = L2(P1(R), λ,R)oT G (13)

with semi−direct product specified by

(T (g)α)(x) = κg(x)α(xg), (14)
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where G = SL(2,R), g ∈ G, α ∈ L2(P1(R), λ,R). Moreover, if

g =

[
a b
c d

]
, (15)

then the components x1, x2 of x ∈ R2 − {0} transform linearly under g, so that the ratio
x = x1/x2, x2 ̸= 0, transforms fraction linearly under g. Writing xg for the transformed ratio,

xg =
(xg)1
(xg)2

=
x1a+ x2c

x1b+ x2d
=
xa+ c

xb+ d
. (16)

The ratio x = x1/x2, x2 ̸= 0, is a local inhomogeneous coordinate of P1(R). We denote our final
realization of our group by B(2, 1) to distinguish it from the previous realizations B2,1(N+) and
B2,1(N+)c. In analogy to B, it is natural to choose a measure λ on P1(R) which is invariant
under the maximal compact subgroup SO(2) of G; we choose λ to be the standard normalized
Lesbegue measure dλ = dθ

2π .
The factor κg(x) on the right hand side of (14) is defined by

κg(x) =
(xb+ d)2 + (xa+ c)2

1 + x2
. (17)

It is well known [24] that the topological dual of a Hilbert space can be identified with the Hilbert

space itself, so that we have L2
′
(P1(R), λ,R) ≃ L2(P1(R), λ,R). In fact, given a continuous linear

functional ϕ ∈ L2
′
(P1(R), λ,R), we can write, for α ∈ L2(P1(R), λ,R)

(ϕ, α) =< ϕ,α >, (18)

where the function ϕ ∈ L2(P1(R), λ,R) on the right is uniquely determined by (and denoted by

the same symbol as) the linear functional ϕ ∈ L2
′
(P1(R), λ,R) on the left. The representation

theory of B(2, 1) is governed by the dual action T ′ of G on the topological dual L2
′
(P1(R), λ,R)

of L2(P1(R), λ,R). The dual action T ′ is defined by:

< T ′(g)ϕ, α >=< ϕ, T (g−1)α > · (19)

A short calculation gives
(T ′(g)ϕ)(x) = κ−2

g (x)ϕ(xg). (20)

Now, this action T ′ of G on L2
′
(P1(R), λ,R), given explicitly above is, like the action T of G on

L2(P1(R), λ,R), continuous. The ‘little group’ Lϕ of any ϕ ∈ L2
′
(P1(R), λ,R) is the stabilizer

Lϕ = {g ∈ G | T ′(g)ϕ = ϕ}. (21)

By continuity, Lϕ ⊂ G is a closed subgroup.

2. Representation theory
Let A and G be topological groups, and let T be a given homomorphism from G into
the group of automorphisms Aut(A) of A. Suppose A is abelian and H = A oT G is the
semi−direct product of A and G, specified by the continuous action T : G −→ Aut(A). In
the product topology of A × G , H then becomes a topological group. It is assumed that it
becomes a separable locally compact topological group. In order to give the operators of the
induced representations explicitly it is necessary ([3], [12], [13], [14], [15] and references therein)
to give the following information:
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(i) An irreducible unitary representation U of Lϕ on a Hilbert space D for each Lϕ.

(ii) A G −quasi−invariant measure µ on each orbit Gϕ ≈ G/Lϕ, where Lϕ denotes the

little group of the base point ϕ ∈ A
′
of the orbit Gϕ; A′

is the topological dual of A.

Let Dµ be the space of functions ψ : G → D which satisfy the conditions

(a) ψ(gl) = U(l−1)ψ(g), g ∈ G, l ∈ Lϕ,

(b)
∫
Gϕ < ψ(q), ψ(q) > dµ(q) <∞,

where the scalar product under the integral sign is that of D. Note, that the constraint (a)
implies that < ψ(gl), ψ(gl) >=< ψ(g), ψ(g) >, and therefore the inner product < ψ(g), ψ(g) >,
g ∈ G, is constant along every element q of the coset space G/Lϕ ≈ Gϕ. This allows to assign
a meaning to < ψ(q), ψ(q) >, where q = gLϕ, by defining < ψ(q), ψ(q) >:=< ψ(g), ψ(g) > .
Thus the integrand in (b) becomes meaningful due to the condition (a). A pre−Hilbert space
structure can now be given to Dµ by defining the scalar product

< ψ1, ψ2 >=

∫
Gϕ
< ψ1(q), ψ2(q) > dµ(q), (22)

where ψ1, ψ2 ∈ Dµ. It is convenient to complete the space Dµ with respect to the norm defined
by the scalar product (22). In the resulting Hilbert space, functions are identified whenever they
differ, at most, on a set of µ−measure zero. Thus our Hilbert space is

Dµ = L2(Gϕ, µ,D). (23)

Define now an action of H = AoT G on Dµ by

(goψ)(q) =

√
dµgo
dµ

(q)ψ(g−1
o q), (24)

αψ(q) = ei<goϕ,α>ψ(q), (25)

where go ∈ G, q ∈ Gϕ, and α ∈ A. Eqs. (24) and (25) define the IRS of B(2, 1) induced from

each ϕ ∈ A
′
and each irreducible representation U of Lϕ. The ‘Jacobian’

dµgo
dµ of the group

transformation is known as the Radon−Nikodym derivative of µgo with respect to µ and ensures
that the resulting IRS of B(2, 1) are unitary.
The central results of induced representation theory ([3], [12], [13], [14], [15] and references
therein) are the following:

(i) Given the topological restrictions on H = AoT G (separability and local compactness), any
representation of H, constructed by the method above, is irreducible if the representation
U of Lϕ on D is irreducible. Thus an irreducible representation of H is obtained for

each ϕ ∈ A
′
and each irreducible representation U of Lϕ.

(ii) If H = A oT G is a regular semi−direct product (i.e., A
′
contains a Borel subset which

meets each orbit in A
′
under H in just one point) then all of its irreducible representations

can be obtained in this way.
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3. Obstructions and resolutions
Two remarks are in order regarding the representations of B(2, 1) obtained by the above
construction:

(i) As it is explained in [23] the subgroup L2(P1(R), λ,R) of B(2, 1) = L2(P1(R), λ,R)oT G
is topologised as a (pre) Hilbert space by using a natural measure on P1(R) and by
introducing a scalar product into L2(P1(R), λ,R). If R4 is endowed with the natural
metric topology then the group G = SL(2, R), considered as a subset of R4, inherits the
induced topology on G. In the product topology of L2(P1(R), λ,R) × G, B(2, 1) is a
non−locally compact group (the proof follows, without substantial change, Cantoni’s proof
[25], see also [4]). (In fact the subgroup L2(P1(R), λ,R), and therefore the group B(2, 1)
can be employed with many different topologies. The Hilbert type topology employed here
appears to describe quantum mechanical systems in asymptotically flat space−times [10]).
Since in the Hilbert type topology B(2, 1) = L2(P1(R), λ,R)oT G is not locally compact
the theorems dealing with the irreducibility of the representations obtained by the above
construction no longer apply (see e.g. [13]). However, it can be proved that the induced
representations obtained above are irreducible. The proof follows very closely the one given
in [7] for the case of the original BMS group B.

(ii) Here it is assumed that B(2, 1) is equipped with the Hilbert topology. It is of outmost
significance that it can be proved [23] that in this topology B(2, 1) is a regular
semi−direct−product. The proof follows the corresponding proof [16, 17] for the group

B. Regularity amounts to the fact [12] that L2
′
(P1(R), λ,R) can have no equivalent

classes of quasi−invariant measures µ such that the action of G is strictly ergodic
with respect to µ. When such measures µ do exist it can be proved [12] that an
irreducible representation of the group, with the semi−direct−product structure at hand,
may be associated with each such measure µ, that is not equivalent to any of the IRS
constructed by the Wigner−Mackey’s inducing method. In a different topology it is not
known if B(2, 1) is a regular or irregular semi−direct−product. Irregularity of B(2, 1) in
a topology different from the Hilbert topology would imply that there are IRS of B(2, 1)
that are not unitary equivalent to any of the IRS obtained by the inducing construction.
Strictly ergodic actions are notoriously hard to deal with even in the locally compact case.
Indeed, for locally compact non−regular semi−direct products, there is no known example
for which all inequivalent irreducibles arising from strictly ergodic actions have been found.
For the other 41 groups defined in [18] regularity has only been proved for B [16, 17] when
B is equipped with the Hilbert topology. Similar remarks apply to all of them regarding
IRS arising from strictly ergodic actions in a given topology.

4. Little groups and inducing construction
In [23] it is proved that when B(2, 1) is employed with the Hilbert topology all little groups of
B(2, 1) are compact. In particular the following Theorem is proved:

Theorem 4.1 The little groups Lϕ for B(2, 1) are precisely the closed subgroups of K = SO(2)
which contain the element −I, I being the identity element of G. These are (A) K itself, and
(B) the cyclic groups Cn of even order n.

For a given little group Lϕ the elements ϕ ∈ A
′
which are invariant under Lϕ , i.e., the

elements ϕ ∈ A
′
which satisfy

(T ′(g)ϕ)(x) = ϕ(x) (26)

form a subspace of L2(P1(R), λ,R). We denote this subspace by L2(Lϕ). Then we have the
following Theorem:
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Theorem 4.2 The Hilbert space L2(SO(2)) of invariant vectors ϕ ∈ A
′
under SO(2) is:

L2(SO(2)) =
{
ϕ ∈ L2(P1(R), λ,R) | ϕ(x) = c, c ∈ R

}
. (27)

So L2(SO(2)) is just the one−dimensional space of constant real−valued functions defined on
P1(R). The Hilbert space L2(Cn) of invariant vectors ϕ ∈ A

′
under Cn is:

L2(Cn) = L2(En), (28)

where L2(En) is the Hilbert space of square integrable real−valued functions defined on

En =

{
θ ∈ P1(R) | 0 < θ <

4π

n

}
. (29)

Moreover in [23] it is shown that the Wigner−Mackey’s inducing construction is exhaustive
despite the fact that B(2, 1) is not locally compact in the employed Hilbert topology. This
result is rather important because other group theoretical approaches to quantum gravity which
invoke Wigner−Mackey’s inducing construction (see e.g. [26]) are typically plagued by the
non−exhaustiveness of the inducing construction which results precisely from the fact that the
group in question is not locally compact in the prescribed topology. Exhaustiveness is not just a
mathematical nicety: If the inducing construction is not exhaustive one cannot know if the most
interesting information or part of it is coded in the irreducibles which cannot be found by the
Wigner−Mackey’s inducing procedure. These results, i.e. compactness of the little groups and
exhaustiveness of the inducing construction, not only are significant for the group theoretical
approach to quantum gravity advocated here, but also they have repercussions [23] for other
approaches to quantum gravity.

5. Construction of the IRS of B(2, 1)
To find explicitly the operators of the induced representations of B(2, 1), it suffices to provide
the information cited in (i) and (ii) in section 2 for each of the orbit types. We note that all the
little groups are abelian. All IRS of an abelian group are one−dimensional.

(i), (iα) Lϕ = K = SO(2).
The IRS U of K are parameterized by an integer ν which for distinct representations takes
the values ν = ...,−2,−1, 0, 1, 2, ... . Denoting these representations by U (ν), they are given by
multiplication in one complex dimension D ≈ C by

U (ν)(R(θ)) = eiνθ, (30)

where R(θ) =

(
cosθ −sinθ
sinθ cosθ

)
∈ SO(2).

(iβ) Lϕ = Cn, n is even.
The IRS U of Cn are parameterized by an integer λ which for distinct representations takes
the values λ = 0, 1, 2, ..., n − 1. Denoting these representations by U (λ), they are given by
multiplication in one complex dimension D ≈ C by

U (λ)

(
R

(
2π

n
j

))
= ei

2π
n
λj , (31)

where j parameterizes the elements of the group Cn.
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(ii) A G −quasi−invariant measure µ on each orbit Gϕ ≈ G/Lϕ is required, however, a
G −invariant measure µ on each orbit Gϕ ≈ G/Lϕ will be given in all cases. We note that

when µ is G −invariant then
dµgo
dµ (q) = 1, and this is precisely what happens in the case of

B(2, 1). Moreover, in the case of B(2, 1), G = G =SL(2,R), and the little groups Lϕ are given
in Theorem 4.1.

(iiα) In [23] it is proved that the construction of a unique (up to a constant factor) G−invariant
measure on the orbit 01 ≡ G/Lϕ, Lϕ = K = SO(2), necessitates the construction of
a G−invariant measure on G, and the construction of a K−invariant measure on K. A
G−invariant measure on

G = SL(2, R) =

{(
a b
c d

)
, a, b, c, d ∈ R, ad− bc = 1

}
,

is given by

dg =
da ∧ db ∧ dc

a
. (32)

G−invariant measure means dg = d(ggo) = d(gog), go ∈ SL(2, R). A K−invariant measure on
K is given by the 1−form dθ where θ is the usual angular coordinates which covers P1(R) ≃ S1.

(iiβ) The orbits 02 ≡ G/Lϕ, Lϕ = Cn, where n is even, can be endowed with the G−invariant
measure on G given in case 01. Indeed, for a given little group Lϕ, the orbit 02 ≡ G/Lϕ is the
space of orbits of the right action T : G× Lϕ → G of the group Lϕ on G given by

g ⋆ c := g · c, (33)

where g ∈ G and c ∈ Lϕ. Thus the action T denoted by ⋆ is identical to the group multiplication
in G. Since the group Lϕ is finite and since the action (33) is fixed point free the coset spaces
G/Lϕ inherit the measure on G.

This completes the necessary information in order to construct the induced representations
of B(2, 1). As already stated, it is shown in [23] that when B(2, 1) is equipped with the Hilbert
topology the inducing construction is exhaustive notwithstanding the fact that B(2, 1) is not
locally compact. To conclude, in this paper all IRS of B(2, 1) have been constructed in the
Hilbert topology.
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