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Abstract. We constructed SL(2,C) Yang-Mills instanton solutions which satisfy the complex
ADHM equations and the monad construction by using the biquaternion method. And we
also found that the SL(2,C) instanton solutions can be used to explicitly construct instanton
sheaves on C'P? which similar to the case holomorphic vector bundles on CP? of SU(2) ADHM
construction. And the existence of these instanton sheaves is related to singularities on S* which
do not exist in SU(2) instanton case.

1. Introduction

In 1970s, searching classical exact solutions of Yang-Mills (SDYM) equation was an important
issue. The instanton solutions are classical solutions of Euclidean SU(2) (anti)self-dual Yang-
Mills (SDYM). Yang-Mills instantons are not only important in quantum field theory for
physicists but also influential on algebraic geometry for mathematicians. In nonperturbative
quantum field theory, quantum instanton tunnelling has resolved the QCD U(1)4 problem [1]
and created the strong C'P problem with associated QCD 6#-vacua [2] structure. Mathematically,
instanton can be used as a tool in algebraic geometry classify four-manifolds [3] is the key idea.

The first instanton solution [4] BPST 1l-instanton was found in 1975. The 5k moduli
parameters CFTW k-instanton solutions [5] were constructed later. And then JNR extended
the number of moduli parameters of the k-instanton solutions from 5k to 5k + 4 (5,13 for
k = 1,2) [6] based on the 4D conformal symmetry group. Finally, mathematicians ADHM used
method in algebraic geometry and worked out the complete 8k — 3 moduli parameters instanton
solutions for each k-th homotopy in 1978[7]. ADHM used the monad construction combining
with the Penrose-Ward transform to construct the most general instanton solutions. One to one
correspondence between anti-self-dual SU(2)-connections on S* and global holomorphic vector
bundles of rank two on C'P3 is the key idea in ADHM construction. The explicit complete SU(2)
instanton solutions for £ < 3 had been worked out in [8].

ADHM construction has been generalized to the cases of many other compact Lie groups|8, 9]
SDYM theories. Recently, the present authors wrote a paper[10] and generalized the quaternion
calculation in SU(2) ADHM construction to the biquaternion calculation with biconjugation
operation, and built a class of non-compact SL(2,C) Yang-Mills instanton solutions with 16k —6
parameters for each k-th homotopy class. The number of moduli parameters 16k — 6 is consistent
with the conjecture made by Frenkel and Jardim in [11] and proved recently in this paper[12]
from the mathematical sight. From these new SL(2,(C) instanton solutions, we can easily get
SL(2,C) (M, N) instanton solutions constructed in 1984 [13].

The discovery of instanton sheaf structure on the projective space in SL(2,C') case is different
from the holomorphic vector bundles on CP3 in SU(2) case. Comparing with the well know
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regular SU(2) ADHM instanton solutions without any singularities on S* spacetime,there are
singularities on S* for SL(2,C) instanton solutions which can not be gauged away. Recalling
that there is a fibration from C P3 to S* with fibers being CP'. A bundle E on CP? can descend
down to a bundle over S if and only if no fiber of the twistor fibration is a jumping line for E.
This is precisely the case for the SU(2) ADHM construction.

In SL(2,C) instanton solutions, some twistor lines called jumping lines. After Penrose-Ward
transform, we can expect SL(2,C) instanton sheaf structure on CP3. We will show the two
examples of instanton sheaf in this paper. We discover some points on C'P? for the 2-instanton
case, the vector bundle description of SL(2,C) 2-instanton on C'P3 breaks down, and we have
to use the sheaves description or ”sheaf instanton” on CP3[11]

In section II and III of this paper, we will review the biquaternion ADHM construction of
SL(2,C) Yang-Mills instantons with 16k — 6 moduli parameters [10]. In section IV, we will
show how to express the biquaternion instanton solution constructed in section III to complex
ADHM data (B, Im,Jm) with [, = 1,2. which are solutions of the complex version of the
ADHM equations [14],and we will also show the equivalence between biquaternion ADHM
construction and complex ADHM equations. In section V, we will identify the relationship
between o and S matrices in the monad construction and Kerf/Ima the holomorphic vector
bundles on C'P3.Then, we will extend the vector bundles case to the sheaves case which are the
break down of vector bundle at some points of CP? and give two examples of sheaves.

2. Biquaternions
2.1. Quaternion

Now, we are going to review the construction of SL(2,C) YM instantons [13, 10]. We will use
the convention = 0,1, 2,3 and €g123 = 1 for 4D Euclidean space. In contrast to the quaternion
in the Sp(1) (= SU(2)) ADHM construction, the authors of [10] used biquaternion to construct
SL(2,C) Yang-Mills instantons. A quaternion x can be written as

r=xue, T, E€R, eg=1€e =1i,e9=7j,e3=k (1)

where e, e5 and e3 anticommute and obey
ei-ej = —ej- € = €jper; 1,5,k =1,2,3, (2)
el =—1,ed=—1,es = —1. (3)

The conjugate quarternion is defined to be

2t = z0eg — m1€1 — 2009 — T3€3 (4)

so that the norm square of a quarternion is
2|? = 2'e = 22 + 2} + 2% + 22 (5)

Generally the unit quarternions can be expressed as Pauli matrices

60—><(1) ?),ei%—iai;izl,l& (6)
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2.2. Biquaternions
A biquaternion (or complex-quaternion) z can be written as

z = zueu, zu € C, (7)
which occasionally can be written as
z=x+yi (8)

where = and y are quaternions and ¢ = y/—1, not to be confused with e; in Eq.(1). The
biconjugation [16] of z is defined to be

® _ _ _ .
2% = zueL = 20e0 — 2161 — 29€9 — 2363 = x| + Y4, (9)

which was heavily used in the construction of SL(2, C') instantons [10] in contrast to the complex
conjugation
2" = zje, = zpe0 + 21e1 + 25e2 + 2363 = T — yi. (10)

The norm square of a biquarternion is defined to be
212 = 2%2 = (20)” + (21)” + (22)% + (23)%, (11)

which is a complex number in general so we use a subscript ¢ in the norm.

3. Biquaternion ADHM
Now, we're going to review the biquaternion construction of SL(2,C') instantons. The first step
is to introduce the (k + 1) x k biquarternion matrix A(x) = a + bz

_ _ b _pp _
A(2)gp = Aab + bap®, aap = agpey, bap = bl e, x = at'e, (12)

where @, and b, are complex numbers, and aq, and by are biquarternions. 2# is the position
in 4D Euclidean space. The biconjugation of the A(x) matrix is defined to be

A(z)g, = Alx)jef = Ax)faeo — Al@)peer — Alz)j,ez — A(@)jqes. (13)

The quadratic condition of SL(2,(C) instantons reads

A(z)®A(z) = £~ = symmetric, non-singular k x k matrix for z ¢ J, (14)

from which we can deduce that a®a,b®a,a®b and b®b are all symmetric matrices. The choice
of biconjugation operation was crucial for the construction of the SL(2,C) instantons. On the
other hand, for z € J, det A(2)®A(z) = 0. The set J is called singular locus or ”jumping lines”.
There are no jumping lines for the case of SU(2) instantons on S%. In the Sp(1) quaternion
case, the symmetric condition on f~! implies f~! is real; while for the SL(2,C) biquaternion
case, it implies f~! is complez which means [A(2)®A(x)]}; = 0 for p=1,2,3.

To construct the self-dual gauge field, we introduce a (k + 1) x 1 dimensional biquaternion
vector v(z) satisfying the following two conditions

v¥(z)A(x) = 0, (15a)
v¥(x)v(z) =1 (15b)

where v(z) is fixed up to a SL(2,C) gauge transformation

v(z) — v(x)g(x), g(x) € 1x 1 Biquaternion. (16)
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Note that in general a SL(2,C') matrix can be written in terms of a 1 x 1 biquaternion as

Qulp _ 9upu

g= = . (17)
Va¥q gl
The next step is to define the gauge field
Gu(z) = v¥(z)9,v(x), (18)

which is a 1 x 1 biquaternion. The SL(2,C) gauge transformation of the gauge field is

Gu(z)— > G'(x) = (9% (2)v® ()0 (v(z)g(x))
= g% (2)Gu(x)g(x) + 9% ()0ug(x) (19)

where in the calculation Eq.(15b) has been used. Note that, unlike the case for Sp(1), G, (z)
needs not to be anti-Hermitian.
One can then define the SL(2,C) field strength

Four = 0uGo(x) + Gu(@)Go () — [ e 0], (20)

and prove the self-duality of F},,. To count the number of moduli parameters for the SL(2,C)
k-instantons, one can use transformations which preserve conditions Eq.(14), Eq.(15a) and
Eq.(15b), and the definition of G, in Eq.(18) to bring a and b in Eq.(12) into the following

simple canonical form
01xk >\1><k
b= ,a = 21
[Ikxlj [—ykxk (1)

where A\ and y are biquaternion matrices with orders 1 x k and k& X k respectively, and y is
symmetric

y=y". (22)

Thus the constraints for the moduli parameters are
agac; = 0,0 # j, and y;; = yji. (23)

The total number of moduli parameters for k-instanton can be calculated through Eq.(23) to
be

# of moduli for SL(2,C) k-instantons = 16k — 6, (24)

which is twice of that of the case of Sp(1). Roughly speaking, there are 8k parameters for
instanton ”biquaternion positions” and 8k parameters for instanton ”sizes”. Finally one has to
subtract an overall SL(2,C') gauge group degree of freedom 6.

We provide two explicit examples of SL(2,C') instantons here. These will be used in section
V for the discussion of instanton sheaves.

4. Complex ADHM Equations
In this section, we're going to show the equivalence between biquaternion ADHM construction
complex ADHM equations.
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We begin with the canonical form (21) and using the explicit matrix representation(6) to express

the biquaternions as Pauli matrices.

A A o A

Y11 Y2 .- Yik

a= Y21 Y22 .- Y2k

Ykl Yk2 - Ykk
[A)—ix] = (A2 4dM) M) —ixd = (A3 +iA)) AD —iXd
y%l - 19%1 - (%11 + Zgn) 3/52 - ZZ/%Q - (%12 + 233{12) Yie — Wik
yél — Zyy y112+ Z3{111 Z/(1]2 - Z.Z/:1))2 24122+ Zy.121 Yie = Wi
a= y%2 - 11/%2 - (%12 + 113{12) 9%2 - Zy%z - (%22 + 233{22) Yop, — Zy%k
Y12 — W12 Yiz T Wio Y2 — Y2 Yo T W Yar, — Way,
N o S L R
vpe — i — (Ui i) vge — e — (U Tiym) e v — il
Y1k — Wik Y1k T WY1k Yo, — War Yor T+ 15y, Yer — Wik

(25)

— (A +iN) ]
)\2 + i)\z

— (yiy, + iyip)
Yy 13,

— (y31, + 1ya.)
Yor — Wop,

o
- (%kk + ngk)
Yik T Wi

(26)

After rearrangement, we can reorganize this ADHM data into the block matrices.

[ A —idd A — A A —ixi (A +aA]) = (MR 40
Y iyn Y~y Wiy~ (uhtin) = (g i)
Y12 — Wiz Y22 — Wa2 Yor — W — W12+ Z3412) - (3422 + WQQ)
oo | o 7y L = o
Upe i g — W v~ — (i i) — (v + i)
YT Wi Y1~ Wi Yk T Wik Y0 + Wi Y12 + Wia
Yi2 — Wiz Y22 — Wa2 Yo, — W Yiz + W2 Yoo + 1Yo
. L S S
Y1k = Wik Yok — Wak Yek = Wik Yie T Wik Yor + Wax,
J Ja
= |Bu Bax
Bis By

here we have the rearrangement rule for an element z;; in a

Zon—12m—1 —7 Zn,m
Zon—1,2m 7 Znk+m
Zon,2m—1 =7 Zk+n,m »

Zon,2m 7 Zk+nk+m-

and we also do the same process on a®

— (AR +iAL) ]
)\% + 2/\21

- gyuf + ’L?hkg

— (Y31, + 1y,

- (%1%14 + Z%/Iik)
Yir T 1k
Yor, + 1Yy

Yie + Wi |
(27)

(28)
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_)‘z yzl Yz - Yok
a® = Ay Y2 Yz - Yy N (30)
e Ui Yok - Yik
(31)
[—I, By —Ba
= 32
| i —Bi2 Bn (32)
4.2. The Complex ADHM Equations
After the rearrangement and identification, we get symmetric condition as
((@®a)), 0 .. 0 0 0 0 0 ]
0  (a®a)), .. 0 0 0 0 0
0 0 0 0
® \0
S I 0 (o) 0 O 0 0 (33)
0 0 0 0 (@)% 0 0
0 0 0 0 0 (a®a)y 0
0 0 0 0
0 0 0 0 0 0 .. (a®a))
_ |~l2Ji+ BB — BaBiz  —IJy 4 B Bay — Bai Bay (34)
LiJi+ BiiBia — BigBui I1Ja + B11Boa — B12Bay
We can easily derive the complex ADHM equations
[B11, Bio] + I1J1 = 0, (35)
[Ba1, Bag] + I2J2 = 0, (36)
[B11, Baz] + [Ba1, Big] + I1J2 + I2J1 = 0. (37)

4.8. The Reality Conditions
We can impose the condition

L = J,L=—-1J=1I,J,=1,
Bii = Bl ,Biy=Bl,By =—Bj,By =By

Then we can get the Real ADHM equation which are the constrain equations for SU(2) case.
[Bl,BQ]—I—IJ = 0,

B, BY| + [Bo BY| + 11t - gt = 0

5. Monad Construction
In this section, we will talk about a and  matrices in the monad construction.
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5.1. From Complex ADHM to Monad Construction
First, we define o and $ as functions of homogeneous coordinates z, %, z,w on C P>

zB11 + wBs1 + x

a= |zB1s+wBy +y|, (38)
ZJ1 + ’LUJQ
8= [—2’312 —wBy —y 2zB11+wBoy+x 2zl + ’LUIQ] . (39)

Just like the real ADHM equations, the following equation is set up if and only if the ADHM
data is satisfied in complex ADHM equations(37).

Ba=0 (40)

In the monad construction, Eq.(40) tells us that Im « is a subspace of Ker 5 which will make
us to consider the quotient space Ker/3/Ima. The quotient space Ker(/Ima is a function of each
point at C'P3 contains two parts of linear transformations. If the transformation « is injective
and the transformation 3 is surjective, then the dimension of Ker 5/ Im o willbe k+2 —k =2
on all points of C'P? ;so we can use holomorphic vector bundles to describe instantons. In SU(2)
case, we can always use holomorphic vector bundles to study instantons ,but for SL(2,C) case,
the situation is different. 8 and a may not be surjective and injective at some points of CP? for
some ADHM data.The dimension of (Ker 3/ Im «) may vary from point to point on C'P3, and we
have to use sheaf description[11] instead of the holomorphic vector bundles in the non-compact
SL(2,C) instanton case.

5.2. Example of Sheaves
In this subsection, we will talk about the examples of SL(2,C) Yang-Mills 2-instanton sheaves.
In order to discuss explicitly, we define

A3 AL A2
I=|"8 A =171 T3, 41a
UEBI R SV DY (41a)
SVEP X1 B PV
n = — , 41b
NN T A (41b)
AN AR
m = — . 41c
UV Rl FE Y. (41c)
And we know 912 can be express from other parameters A1 , As , y11 , and yoo
_ 1 (yl Y2)
e AO)\ — AP )). 42

5.2.1. Ezample One For the first sample solution, we take the moduli parameters\] = A2 =
A=A = A2 = A3 =0, then we get | = 0, n = 0 and m = M)A}, With these inputs,

= % {0 +v- } 41 and the constraints from common eigenvector become

= () m @)m ][] "
d—Jd? -2 | £d —\[d2— X
If we choose d? — Z‘% = 0, we have
m=2d> =M\, X=-\ z=9y=0 (44)
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Let’s set A} = a,\} = —a where a is a complex number and a # 0, then the corresponding
solutions of moduli parameters are

A —ind — (AT +iA) A9 — i3 — (A3 +iA) T
M A — A MY + g Y - iAS _Ag + 71/\52”.
Y I 0 G () =)
yH y12 0 —d 52) (m +in) —(53)!
12 Y22 —3 —; .
G G m—in 0
| (53) (m +in) — ()1 0 d |
[ a 0 1a ]
Q a ia 0
=1 0 0 _a_
V24 V2
V2§ V2
0 B »nr 0
L ﬁ O O TCL_

Note that since A} # 0, this set of ADHM data is outside of CFTW case. Thus, we have
discovered that, for points [z :y:z:w]=[0:0:1:41] on CP? and the ADHM data given in
Eq.(45), the vector bundle description of SL(2,C) 2-instanton on C' P3 breaks down, and which
is led to use sheaf description for these non-compact Yang-Mills instantons or ”sheaf instantons”
on C'P3[11]. Note in addition that for the case of SU(2) 2-instanton, A , A} and d are real

numbers inconsistent with Eq.(44). This is consistent with the known vector bundle description
of SU(2) 2-instanton on CP3.

5.2.2. Example Two For the second sample solution, we can take the moduli parameters as
M =X =X =) =X =)\ =0, then we get [ =0, n = AI\] and m = 0. With these inputs,
w = +¢ and the constraints from common eigenvector become

s 1 T G ] e
id — ) —d? + 2 td — /2 — 2 A0 |-
If we choose d? — % = 0, we have
n=2d>=X3, N\ =-) z=y=0. (46)
Let’s set A} = a,\2 = —a where a is a complex number and a # 0, then the corresponding

solutions of moduli parameters are

A —ix3 — (AT +iA) A — A3 — (A3 +iA) T
M A — A MY+ ixd Y - iAS _Ag + zAg_
- —d 0 (34)1 (37) (m — in)
. 0 d (@) min) = (5
2o (51 (32) (m —in) d 0
[(54) (m+in) = (57)1 0 d
[ a 0 0 a
0 @ —a 0
Ziq 0 —ia
=0 e &= 0 |a#0 (47)
0 % w0
_% 0 0 ﬁa_
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Notice that A3 # 0, this ADHM data is again outside of CFTW case. Eq.(47) gives the second
example of the SL(2,C) 2-instanton sheaf solution on CP3. Note again that for the case of
SU(2) 2-instanton, A} , A3 and d are real numbers which are inconsistent with Eq.(44). We have
discovered that, for points [z :y: 2 :w] =[0:0:1: 44 on CP3 and the ADHM data given in
Eq.(47), the description of vector bundle of SL(2,C) 2-instanton on C'P? breaks down.

To the further discussion of the geometric picture we have shown above points [z : y : z :
w]=10:0:1:%1]or [0:0:1:=+i] (or setting w = 1 instead of z = 1 with similar formulas)
the vector bundle description is valid. In general, any other biquaternion ADHM data a set of
points can be found as above. So the vector bundle description is necessarily valid outside these
finitely many points. (this does not mean, however, that the vector bundle description has to
be broken at these finitely many points)

We can make a conclusion that a certain proper subset in our biquaternion ADHM data
(including the examples above), the description of vector bundle will break down only at
some finitely many points (which depend on the ADHM data). Nevertheless, for ADHM data
out of this proper subset the vector bundle description remains valid on the whole CP3. In
mathematics[11], the breakdown of the vector bundle description is related to the third Chern
number c3 of the obtained sheaf, which could be nonzero in the sheaf case in contrast to the vector
bundle case in which ¢z is necessarily zero because the bundle is of rank two (two dimensional).

Secondly, the one to one correspondence between ASD connections on the one side and certain
holomorphic objects on the other side-twistor space in ADHM construction will help us to to
understand ASD connections by using the knowledge and information on the twistor side which
is mainly accomplished by Penrose-Ward transform. While this correspondence works well for
the vector bundle case to the SU(2) instantons, SL(2,C) case the holomorphic objects are no
longer vector bundles on the twistor space as we have discussed in this paper. For example,
a vector bundle on C'P? can descend down to S* if and only if its set of jumping lines does
not include any fiber of the fibration map CP? — S%. It is worth working on examining the
singularities of the Penrose-Ward transformed object on S*. When the preceding jumping-line
condition is not met, or when the holomorphic object on C'P? is a sheaf instead of a vector
bundle, the singularities may appear. The cases vary a lot and the nature of the problem
appears really different from one case to another case. So, studying these singularities on S* is
an important future work to do.

Finally, it is natural to ask if our biquaternion ADHM solutions give all solutions to complex
ADHM equations. In our biquaternion construction, we can easily find the number 16k — 6 of
parameters match the number expected by mathematicians[11]. An interested reader will easily
find the solution for k = 1 with I1 = [1 0], I = [0 1], J; = J2 = 0 and all By, = 0 [11] seem
to be out of the biquaternion ADHM data. Now if you take Iy = [t 0], I = [0 #], J; = —11,

Jo = I;f and all By,, = 0, which is seen to be a biquaternion ADHM solution and is equivalent
to (Bim, 9Im, Jmg™ ') in general for any nonzero complex number g, then you will see, by letting
g = t~! and setting ¢ — 0 the above biquaternion solution under equivalence indeed reproduces
the above (non-biquaternion) solution.

6. Conclusion
In SU(2) Yang-Mills instanton ADHM construction, an one to one correspondence between anti-
self-dual SU(2) connections on S* and global holomorphic vector bundles of rank two on CP3
satisfying certain reality conditions. We are going to extend this correspondence to the case of
non-compact SL(2,C) Yang-Mills instanton. First, we use biquaternion ADHM construction
to build SL(2,C) Yang-Mills instanton solutions which can be shown the complex ADHM data
satisfy the complex version of the ADHM equations and the monad construction.

The next step is to calculate whether the ADHM data makes « injective and [ surjective.
In the SL(2,C) CFTW k-instanton solutions case with 10k moduli parameters, although the
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jumping lines exist on S%, the corresponding ADHM data are locally free which means o is
injective and [ is surjective and the vector bundle description of SL(2,C) CFTW k-instanton
on C'P3 remains valid as in the case of SU(2) instantons. We then continue to calculate the
second case of complete known SL(2,C) 2-instanton solutions with 26 moduli parameters. We
find that, for some subset of the complex ADHM data of SL(2,C) 2-instanton solutions on
some points on CP3, the vector bundle description of SL(2,C) 2-instanton on CP? breaks
down, and this is led to use sheaf description for these non-compact Yang-Mills instantons or
”sheaf instantons” on CP3.

Although we have found the instanton sheaves by using quaternion methods in the previous
discussion, we have not worked out the explicit constructions of instanton sheaves yet. We hope
the explicit forms of the SL(2,C') Yang-Mills sheaf instanton solutions constructed in this paper
will help us to dig more materials in both physical and mathematical fields.
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