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Abstract. We overview our study of the positive energy (lowest
weight) unitary irreducible representations of the superalgebras
osp(1|2n, IR). We give more explicitly character formulae for these
representations in the case n = 3.

1. Introduction
Recently, superconformal field theories in various dimensions are attracting
more interest, in particular, due to their duality to AdS supergravities. Until
recently only those for D 6 6 were studied since in these cases the relevant
superconformal algebras satisfy [1] the Haag-Lopuszanski-Sohnius theorem
[2]. Thus, such classification was known only for the D = 4 superconformal
algebras su(2, 2/N) [3] (for N = 1), [4, 5, 6, 7] (for arbitrary N). More
recently, the classification for D = 3 (for even N), D = 5, and D = 6
(for N = 1, 2) was given in [8] (some results are conjectural), and then the
D = 6 case (for arbitrary N) was finalized in [9].
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On the other hand the applications in string theory require the knowledge
of the UIRs of the conformal superalgebras for D > 6. Most prominent
role play the superalgebras osp(1| 2n). Initially, the superalgebra osp(1| 32)
was put forward for D = 10 [10]. Later it was realized that osp(1| 2n) would
fit any dimension, though they are minimal only for D = 3, 9, 10, 11 (for
n = 2, 16, 16, 32, resp.) [11]. In all cases we need to find first the UIRs
of osp(1| 2n, IR) which study was started in [12] and [13]. Later, in [14]
we finalized the UIR classification of [12] as Dobrev-Zhang-Salom (DZS)
Theorem. There we also proved the DZS Theorem for osp(1| 6), while the
case osp(1| 8) was proved in [15].

In the present paper we present more explicitly the character formulae
for osp(1| 6). For the lack of space we refer for extensive literature on the
subject in [12, 14].

2. Preliminaries on representations
Our basic references for Lie superalgebras are [16, 17], although in this
exposition we follow [12].

The even subalgebra of G = osp(1| 2n, IR) is the algebra sp(2n, IR) with
maximal compact subalgebra K = u(n) ∼= su(n)⊕ u(1).

We label the relevant representations of G by the signature:

χ = [ d ; a1 , ..., an−1 ] (1)

where d is the conformal weight, and a1, ..., an−1 are non-negative integers
which are Dynkin labels of the finite-dimensional UIRs of the subalgebra
su(n) (the simple part of K).

We present the classification of the positive energy (lowest weight)
UIRs of G following [12, 14] where were used the methods used for the
D = 4, 6 conformal superalgebras, cf. [4, 5, 6, 7, 9]. The main tool is an
adaptation of the Shapovalov form [18] on the Verma modules V χ over the
complexification GC = osp(1| 2n) of G.

The root system of GC are given in terms of δ1 . . . , δn , (δi, δj) = δij ,
i, j = 1, ..., n. The even and odd roots systems are [16]:

∆0̄ = {±δi ± δj , 1 6 i < j 6 n , ± 2δi , 1 6 i 6 n} , (2)
∆1̄ = {±δi , 1 6 i 6 n}

(we remind that the signs ± are not correlated). We shall use the following
distinguished simple root system [16]:

Π = { δ1 − δ2 , , . . . , δn−1 − δn , δn } , (3)
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or introducing standard notation for the simple roots:

Π = {α1 , ..., αn } , (4)
αj = δj − δj+1 , j = 1, ..., n− 1 , αn = δn .

The root αn = δn is odd, the other simple roots are even. The Dynkin
diagram is:

◦
1
−−− · · · −−− ◦

n−1
==⇒ •

n
(5)

The black dot is used to signify that the simple odd root is not nilpotent. In
fact, the superalgebras B(0, n) = osp(1| 2n) have no nilpotent generators
unlike all other types of basic classical Lie superalgebras [16].

The corresponding to Π positive root system is:

∆+
0̄

= {δi±δj , 1 6 i < j 6 n, 2δi , 1 6 i 6 n}, ∆+
1̄

= {δi , 1 6 i 6 n}
(6)

Conversely, we give the elementary functionals through the simple roots:

δk = αk + · · ·+ αn . (7)

From the point of view of representation theory more relevant is the
restricted root system, such that:

∆̄+ = ∆̄+
0̄
∪∆+

1̄
, (8)

∆̄+
0̄
≡ {α ∈ ∆+

0̄
| 1

2α /∈ ∆+
1̄
} = {δi ± δj , 1 6 i < j 6 n}

The superalgebra G = osp(1| 2n, IR) is a split real form of osp(1| 2n)
and has the same root system.

The above simple root system is also the simple root system of the
complex simple Lie algebra Bn (dropping the distinction between even
and odd roots) with Dynkin diagram:

◦
1
−−− · · · −−− ◦

n−1
==⇒ ◦

n
(9)

and root system:

∆+
Bn

= {δi ± δj , 1 6 i < j 6 n , δi , 1 6 i 6 n} ∼= ∆̄+ (10)

This shall be used essentially below.
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We need explicitly the lowest weight Λ ∈ H∗ (where H is the Cartan
subalgebra of GC) the values of which should be related to the signature (1):

(Λ, α∨k ) = − ak , 1 6 k 6 n , (11)

where α∨k ≡ 2αk/(αk, αk), and the minus signs anticipate the fact that
we shall use lowest weight Verma modules (instead of the highest weight
modules used in [17]) and to Verma module reducibility w.r.t. the roots αk

(this is explained in detail in [6, 12]).
Obviously, an must be related to the conformal weight d which is a

matter of normalization so as to correspond to some known cases. Thus,
our choice is:

an = − 2d− a1 − · · · − an−1 . (12)

The actual Dynkin labelling is given by:

mk = (ρ− Λ, α∨k ) (13)

where ρ ∈ H∗ is given by the difference of the half-sums ρ0̄ , ρ1̄ of the even,
odd, resp., positive roots (cf. (6):

ρ
.= ρ0̄ − ρ1̄ = (n− 1

2)δ1 + (n− 3
2)δ2 + · · ·+ 3

2δn−1 + 1
2δn , (14)

ρ0̄ = nδ1 + (n− 1)δ2 + · · ·+ 2δn−1 + δn ,

ρ1̄ = 1
2(δ1 + · · ·+ δn) .

Naturally, the value of ρ on the simple roots is 1: (ρ, α∨i ) = 1, i = 1, ..., n.
Unlike ak ∈ Z+ for k < n the value of an is arbitrary. In the cases when

an is also a non-negative integer, and then mk ∈ N (∀k) the corresponding
irreps are the finite-dimensional irreps of G.

To introduce Verma modules we use the standard decomposition:

GC = G+ ⊕H ⊕ G− (15)

where G+, G−, resp., are the subalgebras corresponding to the positive,
negative, roots, resp., and H denotes the Cartan subalgebra.

We consider lowest weight Verma modules, so that V Λ ∼= U(G+)⊗ v0 ,
where U(G+) is the universal enveloping algebra of G+, and v0 is a lowest
weight vector v0 such that:

Z v0 = 0 , Z ∈ G−
H v0 = Λ(H) v0 , H ∈ H . (16)
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Further, for simplicity we omit the sign ⊗ , i.e., we write p v0 ∈ V Λ with
p ∈ U(G+).

Adapting the criterion of [17] to lowest weight modules, one finds that a
Verma module V Λ is reducible w.r.t. the positive root β iff the following
holds [12]:

(ρ− Λ, β∨) = mβ , β ∈ ∆+ , mβ ∈ N . (17)

If a condition from (17) is fulfilled then V Λ contains a submodule which
is a Verma module V Λ′ with shifted weight given by the pair m,β :
Λ′ = Λ + mβ. The embedding of V Λ′ in V Λ is provided by mapping
the lowest weight vector v′0 of V Λ′ to the singular vector vm,β

s in
V Λ which is completely determined by the conditions [19]:

X vm,β
s = 0 , X ∈ G− ,

H vm,β
s = Λ′(H) v0 , H ∈ H , Λ′ = Λ + mβ . (18)

Explicitly, vm,β
s is given by a polynomial in the positive root generators

[20, 21]:
vm,β
s = Pm,β v0 , Pm,β ∈ U(G+) . (19)

Thus, the submodule Iβ of V Λ which is isomorphic to V Λ′ is given by
U(G+) Pm,β v0 .

Certainly, (17) may be fulfilled for several positive roots (even for all of
them). Let ∆Λ denote the set of all positive roots for which (17) is fulfilled,
and let us denote: ĨΛ ≡ ∪β∈∆Λ

Iβ . Clearly, ĨΛ is a proper submodule
of V Λ. Let us also denote FΛ ≡ V Λ/ĨΛ.

The Verma module V Λ contains a unique proper maximal submodule
IΛ (⊇ ĨΛ) [17, 22]. Among the lowest weight modules with lowest weight
Λ there is a unique irreducible one, denoted by LΛ, i.e., LΛ = V Λ/IΛ.

It may happen that the maximal submodule IΛ coincides with the
submodule ĨΛ generated by all singular vectors. This is, e.g., the case for
all Verma modules if rank G 6 2, or when (17) is fulfilled for all simple
roots (and, as a consequence for all positive roots). Here we are interested
in the cases when ĨΛ is a proper submodule of IΛ. We need the following
notion.

Definition: [22, 23, 24] Let V Λ be a reducible Verma module. A vector
vssv ∈ V Λ is called a subsingular vector if vsu /∈ ĨΛ and the following
holds:

X vsu ∈ ĨΛ , ∀X ∈ G− (20)

Going from the above more general definitions to G we recall that in [12]
it was established that from (17) follows that the Verma module V Λ(χ) is
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reducible if one of the following relations holds:

N 3 m−
ij = j − i + ai + · · ·+ aj−1 (21a)

N 3 m+
ij = 2n− i− j + 1 + aj + · · ·+ an−1 − a1 − · · · − ai−1 − 2d (21b)

N 3 mi = 2n− 2i + 1 + ai + · · ·+ an−1 − a1 + · · · − ai−1 − 2d (21c)
N 3 mii = n− i + 1

2(1 + ai + · · ·+ an−1 − a1 + · · · − ai−1)− d (21d)

corresponding to the roots δi − δj , δi + δj , (i < j), δi, 2δi, resp. Further
we shall use the fact from [12] that we may eliminate the reducibilities and
embeddings related to the roots 2δi . Indeed, since mi = 2mii , whenever
(21d) is fulfilled also (21c) is fulfilled.

For further use we introduce notation for the root vector X+
j ∈ G+,

j = 1, . . . , n, corresponding to the simple root αj .
Further, we notice that all reducibility conditions in (21a) are fulfilled.

In particular, for the simple roots from those condition (21a) is fulfilled with
β → αi = δi − δi+1 , i = 1, ..., n − 1 and m−

i ≡ m−
i,i+1 = 1 + ai . The

corresponding submodules Iαi = U(G+) vi
s , where Λi = Λ + m−

i αi and
vi
s = (X+

i )1+ai v0 . These submodules generate an invariant submodule
which we denote by IΛ

c ⊂ ĨΛ. Since these submodules are nontrivial for all
our signatures in the question of unitarity instead of V Λ we shall consider
also the factor-modules:

FΛ
c = V Λ / IΛ

c ⊃ FΛ . (22)

We shall denote the lowest weight vector of FΛ
c by |Λc〉 and the singular

vectors above become null conditions in FΛ
c :

(X+
i )1+ai |Λc〉 = 0 , i = 1, ..., n− 1. (23)

If the Verma module V Λ is not reducible w.r.t. the other roots, i.e.,
(21b,c,d) are not fulfilled, then FΛ

c = FΛ is irreducible and is isomorphic
to the irrep LΛ with this weight.

In fact, for the factor-modules reducibility is controlled by the value of
d, or in more detail:

The maximal d coming from the different possibilities in (21b) are
obtained for m+

ij = 1 and they are:

dij ≡ n + 1
2(aj + · · ·+ an−1 − a1 − · · · − ai−1 − i− j) , i < j, (24)

the corresponding root being δi + δj .
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The maximal d coming from the different possibilities in (21c) are
obtained for mi = 1 and they are:

di ≡ n− i + 1
2(ai + · · ·+ an−1 − a1 − · · · − ai−1) , (25)

the corresponding roots being δi .
There are some orderings between these maximal reduction points [12]:

d1 > d2 > · · · > dn , (26)
di,i+1 > di,i+2 > · · · > din ,

d1,j > d2,j > · · · > dj−1,j ,

di > djk > d` , i 6 j < k 6 ` .

Obviously the first reduction point is:

d1 = n− 1 + 1
2(a1 + · · ·+ an−1) . (27)

Below we shall use the following notion. The singular vector v1 is called
descendant of the singular vector v2 /∈ Cv1 if there exists a homogeneous
polynomial P12 in U(G+) so that v1 = P12 v2 . Clearly, in this case we
have: I1 ⊂ I2 , where Ik is the submodule generated by vk . Thus, when
we factor the submodule I2 this means factoring also the submodule I1.

3. Unitarity
The first results on the unitarity were given in [12], and then improved
in [14]. Thus, the statement below should be called Dobrev-Zhang-Salom
Theorem:
Theorem DZS: All positive energy unitary irreducible representations
of the superalgebras osp(1| 2n, IR) characterized by the signature χ in (1)
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are obtained for real d and are given as follows:

d > n− 1 + 1
2(a1 + · · ·+ an−1) = d1 , a1 6= 0 , (28)

d > n− 3
2 + 1

2(a2 + · · ·+ an−1) = d12 , a1 = 0, a2 6= 0 ,

d = n− 2 + 1
2(a2 + · · ·+ an−1) = d2 > d13 , a1 = 0, a2 6= 0 ,

d > n− 2 + 1
2(a3 + · · ·+ an−1) = d2 = d13 , a1 = a2 = 0, a3 6= 0 ,

d = n− 5
2 + 1

2(a3 + · · ·+ an−1) = d23 > d14 , a1 = a2 = 0, a3 6= 0 ,

d = n− 3 + 1
2(a3 + · · ·+ an−1) = d3 = d24 > d15 , a1 = a2 = 0, a3 6= 0 ,

(29)
...

d > n− 1− κ + 1
2(a2κ+1 + · · ·+ an−1) , a1 = ... = a2κ = 0, a2κ+1 6= 0 ,

κ = 1
2 , 1, ..., 1

2(n− 1) ,

d = n− 3
2 − κ + 1

2(a2κ+1 + · · ·+ an−1) , a1 = ... = a2κ = 0, a2κ+1 6= 0 ,

...

d = n− 1− 2κ + 1
2(a2κ+1 + · · ·+ an−1) , a1 = ... = a2κ = 0, a2κ+1 6= 0 ,

...

d > 1
2(n− 1) , a1 = ... = an−1 = 0

d = 1
2(n− 2) , a1 = ... = an−1 = 0

...

d = 1
2 , a1 = ... = an−1 = 0

d = 0 , a1 = ... = an−1 = 0

Parts of the Proof were given in [12], while in [14] was given a detailed sketch
of the Proof. In [14] was given also the Proof for the case n = 3, while the
proof for n = 4 was given in [15].

4. Character formulae
Let Ĝ be a simple Lie algebra of rank ` with Cartan subalgebra Ĥ, root
system ∆̂, simple root system π̂. Let Γ, (resp. Γ+), be the set of all
integral, (resp. integral dominant), elements of Ĥ∗, i.e., λ ∈ Ĥ∗ such that
(λ, α∨i ) ∈ Z, (resp. Z+), for all simple roots αi , (α∨i ≡ 2αi/(αi, αi)). Let V
be a lowest weight module with lowest weight Λ and lowest weight vector
v0 . It has the following decomposition:

V = ⊕
µ∈Γ+

Vµ , (30)

Vµ = {u ∈ V | Hu = (Λ + µ)(H)u, ∀ H ∈ H}
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(Note that V0 = Cv0 .) Let E(H∗) be the associative abelian algebra
consisting of the series

∑
µ∈H∗ cµe(µ) , where cµ ∈ C, cµ = 0 for µ outside

the union of a finite number of sets of the form D(λ) = {µ ∈ H∗|µ > λ} ,
using some ordering of H∗, e.g., the lexicographic one; the formal exponents
e(µ) have the properties: e(0) = 1, e(µ)e(ν) = e(µ + ν).

Then the (formal) character of V is defined by:

ch0 V =
∑

µ∈Γ+

(dim Vµ) e(Λ + µ) =

= e(Λ)
∑

µ∈Γ+

(dim Vµ) e(µ) (31)

(We shall use subscript ’0’ for the even case.)
For a Verma module, i.e., V = V Λ one has dim Vµ = P (µ), where P (µ)

is a generalized partition function, P (µ) = # of ways µ can be presented as
a sum of positive roots β, each root taken with its multiplicity dimGβ (= 1
here), P (0) ≡ 1. Thus, the character formula for Verma modules is:

ch0 V Λ = e(Λ)
∑

µ∈Γ+

P (µ)e(µ) = (32)

= e(Λ)
∏

α∈∆+

(1− e(α))−1

Further we recall the standard reflections in Ĥ∗ :

sα(λ) = λ− (λ, α∨)α , λ ∈ Ĥ∗ , α ∈ ∆̂. (33)

The Weyl group W is generated by the simple reflections si ≡ sαi ,
αi ∈ π̂ . Thus every element w ∈ W can be written as the product of
simple reflections. It is said that w is written in a reduced form if it is
written with the minimal possible number of simple reflections; the number
of reflections of a reduced form of w is called the length of w, denoted by
`(w).

The Weyl character formula for the finite-dimensional irreducible LWM
LΛ over Ĝ, i.e., when Λ ∈ −Γ+ , has the form:

ch0 LΛ =
∑

w∈W

(−1)`(w) ch0 V w·Λ , Λ ∈ −Γ+ (34)

where the dot · action is defined by w · λ = w(λ − ρ) + ρ. For future
reference we note:

sα · Λ = Λ + nαα (35)
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where

nα = nα(Λ) .= (ρ− Λ, α∨) = (ρ− Λ)(Hα) , α ∈ ∆+. (36)

In the case of basic classical Lie superalgebras the first character formulae
were given by Kac. They are more complicated than the bosonic case, except
for the algebras we consider. Actually, for osp(1/2n) the Verma module
character formula is the same as (32):

ch V Λ = e(Λ)
∏

α∈∆̄+

1
1− e(α)

(37)

using the restricted root system ∆̄+. Naturally, the character formula for
the finite-dimensional irreducible LWM LΛ is again (34) using the Weyl
group Wn of Bn .

Multiplets

A Verma module V Λ may be reducible w.r.t. to many positive roots,
and thus there maybe many Verma modules isomorphic to its submodules.
They themselves may be reducible, and so on.

One main ingredient of the approach of [20] is as follows. We group the
(reducible) Verma modules with the same Casimirs in sets called multiplets
[20]. The multiplet corresponding to fixed values of the Casimirs may be
depicted as a connected graph, the vertices of which correspond to the
reducible Verma modules and the lines between the vertices correspond to
embeddings between them. The explicit parametrization of the multiplets
and of their Verma modules is important for understanding of the situation.

If a Verma module V Λ is reducible w.r.t. to all simple roots (and thus
w.r.t. all positive roots), i.e., mk ∈ N for all k, then the irreducible
submodules are isomorphic to the finite-dimensional irreps of GC [20].
(Actually, this is a condition only for mn since mk ∈ N for k = 1, . . . , n−1.)
In these cases we have the main multiplets which are isomorphic to the
Weyl group of GC [20].

In the cases of non-dominant weight Λ the character formula for the
irreducible LWM is [25] :

ch LΛ =
∑
w∈W
w6wΛ

(−1)`(wΛw) Pw,wΛ(1) ch V w·(w−1
Λ ·Λ) , Λ ∈ Γ (38)

where Py,w(u) are the Kazhdan–Lusztig polynomials y, w ∈ W [25] (for
an easier exposition see [24]), wΛ is a unique element of W with minimal
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length such that the signature of Λ0 = w−1
Λ · Λ is anti-dominant or

semi-anti-dominant:

χ0 = (m′
1, . . . ,m

′
n), m′

k = 1− Λ0(Hk) ∈ Z− . (39)

Note that Py,w(1) ∈ N for y 6 w.
When Λ0 is semi-anti-dominant, i.e., at least one m′

k = 0, then in fact
W is replaced by a reduced Weyl group WR .

Most often the value of Py,w(1) is equal to 1 (as in the character formula
for the finite-dimensional irreps), while the cases Py,w(1) > 1 are related to
the appearance of subsingular vectors, though the situation is more subtle,
see [24].

It is interesting to see how the reducible points relevant for unitarity fit
in the multiplets. In the case of dij using (24) we have:

mn(dij) = 1− 2mj − · · · − 2mn−1 −mi − · · · −mj−1 . (40)

In the case of di (25) we have:

mn(di) = 1− 2mi − · · · − 2mn−1 . (41)

As expected the weights related to positive energy d are not dominant
(mn(dij) ∈ Z−, mn(di) ∈ −N, (i < n)), since the positive energy UIRs are
infinite-dimensional. (Naturally, mn(dn) = 1 falls out of the picture since
dn < 0.)

Thus, the Verma modules with weights related to positive energy would
be somewhere in the main multiplet (or in a reduction of the main multiplet),
and the first task for calculating the character is to find the wΛ in the
character formula (38). This we do in the next subsection in the case n = 3.

5. The case of osp(1|6)
For n = 3 formula (26) simplifies to:

d1

�
d12

�
d2

�
d23

�
d3

� ��
d13

�
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The Theorem now reads:

d > 2 + 1
2(a1 + a2) = d1 , a1 6= 0 , (42)

d > 3
2 + 1

2a2 = d12 , a1 = 0, a2 6= 0 ,

d = 1 + 1
2a2 = d2 > d13 , a1 = 0, a2 6= 0 ,

d > 1 = d2 = d13 , a1 = a2 = 0 ,

d = 1
2 = d23 , a1 = a2 = 0 ,

d = 0 = d3 , a1 = a2 = 0 .

The Weyl group Wn of Bn has 2nn! elements, i.e., 48 for B3. Let
S = (s1, s2, s3), si ≡ sαi , be the simple reflections. They fulfill the
following relations:

s2
1 = s2

2 = s2
3 = e, (s1s2)3 = e, (s2s3)4 = e, s1s3 = s3s1 , (43)

e being the identity of W3 . The 48 elements may be listed as:

e , s1 , s2 , s3 (44)
s1s2 , s1s3 , s2s1 , s2s3 , s3s2 ,

s1s2s1 , s1s2s3 , s1s3s2 , s2s1s3 , s2s3s2 ,

s3s2s1 , s3s2s3 ,

s1s2s1s3 , s1s2s3s2 , s1s3s2s1 , s1s3s2s3 ,

s2s3s2s1 , s2s1s3s2 , s3s2s3s1 , s3s2s3s2 ,

s1s2s3s2s1 , s1s3s2s1s3 , s1s2s1s3s2 ,

s1s3s2s3s2 , s2s1s3s2s1 , s2s1s3s2s3 ,

s3s2s3s1s2 , s3s2s3s2s1 ,

s1s3s2s3s2s1 , s1s3s2s1s3s2 , s1s2s1s3s2s1 ,

s2s1s3s2s1s3 , s2s1s3s2s3s2 , s3s2s3s1s2s1 ,

s3s2s3s1s2s3 , s2s1s3s2s3s2s1 ,

s2s1s3s2s3s1s2 , s3s2s1s2s3s2s1 ,

s3s2s3s1s2s1s3 , s3s2s3s1s2s3s2 ,

s2s3s2s1s2s3s2s1 , s3s2s1s3s2s3s2s1 ,

s3s2s1s3s2s3s1s2 , s2s3s2s1s3s2s3s2s1 .

The character formula for the Verma modules in our case is given
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explicitly by:

ch V Λ =
e(Λ)

(1− t1)(1− t2)(1− t1t2)
×

× 1
(1− t3)(1− t2t3)(1− t1t2t3)

×

× 1
(1− t2t23)(1− t1t2t23)(1− t1t22t

2
3)

(45)

where tj ≡ e(αj).
Now we give the character formulae of the five boundary or isolated

unitarity cases. Below we shall denote the signature of the dominant weight
Λ0 which determines the main multiplet by (m′

1,m
′
2,m

′
3), m′

k ∈ N, using
primes to distinguish from the signatures of the weights we are interested.
We shall use also reductions of the main multiplet when the weights are
semi-dominant, i.e., when some m′

k = 0.

• In the case of d = d1 = 2 + 1
2(a1 + a2) there are twelve members

of the multiplet which is a submiltiplet of a main multiplet. (Remember
that that m1 > 1 since a1 6= 0.) They are grouped into two standard
sl(3) submultiplets of six members. The first submultiplet starts from
V Λ

d1
0 , where Λd1

0 = w · Λ0, w = w
Λ

d1
0

= s2s1s3s2s3 , with signature:

Λd1
0 : (m1,m2,m

′
3 = 1− 2m12) , (46)

m1,m2 ∈ N , m12 ≡ m1 + m2 .

The other submultiplet starts from V Λ′0 with Λ′0 = Λd1
0 + δ1 = Λd1

0 +
α1 + α2 + α3, with signature: Λ′0 : (m1 − 1,m2,m

′
3 = 1− 2m12), m1 > 1.

The character formula is (38) with wΛ = w
Λ

d1
0

:

chΛd1
0 =

e(Λd1
0 )

(1− t3)(1− t2t3)(1− t1t2t3)
× (47)

× 1
(1− t2t23)(1− t1t2t23)(1− t1t22t

2
3)

×

× { chΛm1,m2(t1, t2) − t1t2t3 chΛm1−1,m2(t1, t2) } , m1 > 1

where chΛm1,m2(t1, t2) is the normalized character of the finite-dimensional
sl(3) irrep with Dynkin labels (m1,m2) (and dimension m1m2(m1 +
m2)/2):

ch Λm1,m2(t1, t2) =
1− tm1

1 − tm2
2 + tm1

1 tm12
2 + tm12

1 tm2
2 − tm12

1 tm12
2

(1− t1)(1− t2)(1− t1t2)
(48)
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Naturally, the latter formula is a polynomial in t1, t2 , e.g.,
ch Λ1,1(t1, t2) = 1, ch Λ2,1(t1, t2) = 1 + t1 + t1t2 .

In the case m1 = 2,m2 = 1 the character formula (47) simplifies to:

chΛd1
0 =

e(Λd1
0 )

(1− t3)(1− t2t3)(1− t2t23)(1− t1t2t23)(1− t1t22t
2
3)

×

×
(

1 +
t1(1 + t2)
1− t1t2t3

)
, m1 = 2,m2 = 1 (49)

• In the case of d = d12 = 1
2(3 + a2) which is relevant for unitarity,

i.e., m1 = 1, there are again twelve members of the multiplet. Omitting the
details [14] the character f-la is:

chΛd12
0 =

e(Λd12
0 )

(1− t3)(1− t2t3)(1− t1t2t3)
× (50)

× 1
(1− t2t23)(1− t1t2t23)(1− t1t22t

2
3)

×{ chΛ1,m2(t1, t2) − (t1t22t
2
3)

m2 chΛ1,m2−1(t1, t2) } , m2 > 1

In the case m2 = 2 it simplifies to:

chΛd12
0 =

e(Λd12
0 )

(1− t3)(1− t2t3)(1− t1t2t3)(1− t2t23)(1− t1t2t23)
×

×{ 1 + t1t
2
2t

2
3 +

t2(1 + t1)
1− t1t22t

2
3

} (51)

• In the case d = d2 = d13 = 1 and a1 = a2 = 0, m1 = m2 = 1, the
signature is:

Λd2=d13
0 : (1, 1,−1) . (52)

Again there are twelve members of the multiplet which has two sl(3)
submultiplets. First there is a sl(3) sextet starting from Λd2=d13

0 with
parameters (1, 1). Then there is a sl(3) sextet starting from Λd2=d13

0 +
α1 + 2α2 + 3α3 with parameters (1, 1). Note that that α1 + 2α2 + 3α3 =
δ1 + δ2 + δ3 is the weight of a subsingular vector [14], yet the corresponding
KL polynomial Py,w(1) is equal to 1. Thus, the character formula is [14]:

chΛd2=d13
0 = (53)

=
e(Λd2=d13

0 )
(

1− t1t
2
2t

3
3

)

(1− t3)(1− t2t3)(1− t1t2t3)(1− t2t23)(1− t1t2t23)(1− t1t22t
2
3)
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Note that the above formula may be rewritten as:

chΛd2=d13
0 =

e(Λd2=d13
0 )

(1− t2t3)(1− t1t2t3)(1− t2t23)(1− t1t2t23)
×

×
( 1

1− t1t22t
2
3

+
t3

1− t3

)
(54)

• In the case of d = d2 = 1+ 1
2a2 > d13 = 1, i.e., m1 = 1, m2 = 1+a2 > 1.

The multiplet has 24 members for m2 > 2. Omitting the details [14] the
character f-la is:

chΛ
′d2
0 =

e(Λ
′d2
0 )

(1− t3)(1− t2t3)(1− t1t2t3)
× (55)

× 1
(1− t2t23)(1− t1t2t23)(1− t1t22t

2
3)

×

× { chΛ1,m2(t1, t2) − t2t3 chΛ2,m2−1(t1, t2) +

+ t1t
3
2t

3
3 chΛ2,m2−2(t1, t2) − t21t

4
2t

4
3 chΛ1,m2−2(t1, t2) }

When m2 = 2 (a2 = 1) the multiplet reduces to only 12 members, and
the character formula simplifies to:

chΛ
′d2
0 =

e(Λ
′d2
0 )

(1− t2t23)(1− t1t2t23)(1− t1t22t
2
3)

× (56)

× { 1
(1− t3)(1− t1t2t3)

+
t2

(1− t3)(1− t2t3)

+
t1t2

(1− t2t3)(1− t1t2t3)
}

• In the case of d = d23 = 1
2 , a1 = a2 = 0, i.e., m1 = m2 = 1, again we

have a multiplet with 24 members. Omitting the details [14] the character
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formula is:

chΛd23
0 =

e(Λd23
0 )

(1− t3)(1− t2t3)(1− t1t2t3)
× (57)

× 1
(1− t2t23)(1− t1t2t23)(1− t1t22t

2
3)

×

× { 1 − t2t
2
3 chΛ2,1(t1, t2) + t1t

2
2t

4
3 chΛ1,2(t1, t2) − t21t

4
2t

6
3 } =

=
e(Λd23

0 )
(1− t3)(1− t2t3)(1− t1t2t3) (1− t2t23)(1− t1t2t23)(1− t1t22t

2
3)

×

× { 1 − t2t
2
3 (1 + t1 + t1t2) + t1t

2
2t

4
3 (1 + t2 + t1t2) − t21t

4
2t

6
3 }

Note that the above formula may be rewritten as:

chΛd23
0 =

e(Λd23
0 )

(1− t3)(1− t2t3)(1− t1t2t3)
(58)

Note that formulae (49),(51),(54),(56),(58) are new w.r.t. [14].
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