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Abstract.
We establish a link between classical heterotic strings and the groups of the magic square associated

with Jordan algebras, allowing for a uniform treatment of the bosonic and superstring sectors of the heterotic
string.

1. Division and Jordan Algebras, Magic Squares
This will be an introduction to the construction of the super-Poincaré group in special dimensions

d = 3, 4, 6, 10, called critical dimensions in which it is possible to write supersymmetric classical
Lagrangians for Yang-Mills theories and superstrings. It is known that the conventional quantization
of superstrings[1] is only possible in d = 10. However, parastatistical quantization appears to be possible
in the other critical dimensions[2]. In critical dimensions special algebraic structures occur. They are
associated with the four division algebras of the Hurwitz’s theorem[3], i.e. R (the real numbers), C
(complex numbers), H (quaternions) and O (octonions or Cayley numbers). Their dimensions are
respectively 1, 2, 4 and 8 or d−2 if d is the critical dimension. They have positive semi-definite quadratic
multiplicative norms. The first two are commutative and associative. Quaternions are associative but not
commutative and hence can be represented by 2 × 2 complex or 4 × 4 real matrices. Octonions are
neither commutative nor associative and as a result have no direct matrix representations. However, their
associator is totally antisymmetric, so that the octonion algebra is ”alternative”.

We shall make use of the norm groups and the automorphism groups of the Hurwitz algebras. The
norm groups are formed by the linear transformations of the components of an element of the algebra
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that preserve the quadratic norm. For real numbers it it the discrete group Z2. For complex numbers
it is O(2) ∼ U(1). For quaternions it is O(4) ∼ SU(2) × SU(2) and for octonions it is O(8). The
automorphism groups are the groups that leave invariant the multiplication table of the imaginary units
of the algebra. It is Z2 (i→ −i) for complex numbers, SU(2) for quaternions and the exceptional group
G2 for octonions. The automorphism groups, unlike the norm groups, leave the real (or scalar) part of an
algebra element invariant. All Hurwitz algebras are power associative, so that ifN = n1+n2+ . . .+nm,
we can write

xN = xn1 . xn2 . . . xnm (1)

unambiguously and independently of the brackets in the nonassociative case. Besides alternative algebras
Jordan algebras are also power associative. We now give a brief description of Jordan algebras.

Jordan algebras have elements that have a commutative product

a.b = b.a (2)

which is not associative but is subject to the Jordan identity

[a b a2] = 0 , (3)

where the square bracket denotes the associator defined by

[a b c] = (a.b).c − a.(b.c) . (4)

An example of a Jordan algebra is the algebra of observables with elements that are n× n hermitian
complex matrices with the composition law

a.b =
1

2
{a b} =

1

2
(a b+ b a) . (5)

The identity (3) is satisfied. There is also the exceptional Jordan algebra J8
3 of 3 × 3 octonionic

matrices that are hermitian with respect to octonionic conjugation. Note that in a conjugation the sign of
imaginary units is reversed. The commutative Jordan product in this case is still defined by (5) and the
Jordan identity still holds.

The classical Lie groups can be regarded as the automorphism groups of Jordan algebras. If J1
n, J

2
n

and J4
n denote the Jordan algebras of n × n hermitian matrices over R, C and H respectively they have

the corresponding automorphism groups O(n), SU(n) and Sp(n). The automorphism group of the
exceptional Jordan algebra is the exceptional group F4. The automorphism groups leave the trace of
the Jordan matrices invariant. Hence traceless hermitian matrices are modules for their automorphism
groups. For 3× 3 matrices we find the following groups and dimensions:

Division algebras R C H O
Jordan algebras J1

3 J2
3 J4

3 J8
3

Dim. of traceless elements 5 8 14 26
Automorphism groups O(3) SU(3) Sp(3) F4

Dim. of automorphism groups 3 8 21 52

These groups form the first line of the celebrated magic square of Rozenfeld, Freudenthal and Tits[5].
To proceed further we must introduce the Freudenthal algebra[6]. Consider a 3 × 3 complex octonionic
matrix J that is hermitian with respect to octonionic conjugation. It is a 27-dimensional module (27) for
the exceptional group E6, which is a complex group like SU(3). Since 27 × 2̄7 contains the identity
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representation and 27 × 27 contains the (2̄7) representation of E6 we can define a scalar product and a
symmetric product associated with the mappings

J × J∗ → C and J × J → J∗, J∗ × J∗ → J . (6)

The scalar product is defined by

(J ,K∗) = Tr (J .K∗) (7)

while the ”Freudenthal product” of J and K, both belonging to the (27) representation of E6 is obtained
by first introducing

J × J = J−1 Det J = J2 − J Tr J − 1

2
I Tr (J2 − J Tr J) , (8)

and then defining

J ×K =
1

2
(J +K)× (J +K) − 1

2
J × J − 1

2
K ×K , (9)

we find

J ×K = J.K − 1

2
J Tr K − 1

2
K Tr J − 1

2
I (Tr J.K − Tr J Tr K) . (10)

If J and K transform like (27), then J ×K transforms like 2̄7 of E6. Similarly J∗ ×K∗ transforms
like a (27). The group E6 is an automorphism group for the combination of the scalar product (7) and
the Freudenthal product (10).

If we consider automorphism groups of 3× 3 matrices with entries that are combinations of complex
numbers with the four division algebras, requiring hermiticity with respect to the latter only, and then
define scalar and Freudenthal products as for the octonionic matrices, we find

R C H O
Automorphism group C : SU(3) SU(3)× SU(3) SU(6) E6

Dimension of group 8 16 35 78
Complex Dim. of module 6 9 15 27

This is the second line of the magic square. Note that the traces of the 3× 3 matrices are not invariant
under the automorphism groups of the Freudenthal algebra, but Det J , Tr (J.K∗) and Tr (J∗.K) are
invariant.

The combination of the scalar product and the Freudenthal product also allows for the definition of a
triple product that is E6 covariant. Given F and K that belong to the (27) representation we define

M = {F K∗ F} = F Tr (K∗.F )− 2 (F × F )×K∗ . (11)

Then M also transforms like a (27). In the case of ordinary matrices it can be expressed in terms of the
usual matrix product as

M = FK∗F , (12)

so that

Det M = (DetF )2 Det K∗ , (13)

a property that also holds for the exceptional Jordan algebra. Given three elements of the Freudenthal
algebra F , K, L, we have the triple product:
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N = {F K∗ L} =
1

2
{(F + L) K∗ (F + L)} − 1

2
{F K∗ F} − 1

2
{L K∗ L} . (14)

In terms of the Jordan product it can be written in the form[4]

N = {F K∗ L} = (F.K∗).L+ F.(K∗.L)−K∗.(F.L) . (15)

E6 is also the automorphism group of this ternary algebra.
In the case of the exceptional group E7 there is a 56-dimensional fundamental representation X

consisting of two complex scalars α and β∗ and two Jordan matrices J and K∗ belonging respectively
to the (27) and (2̄7) representations of the E6 subgroup. Now the direct product of three 56 dimensional
representations also contains a (56). Hence there is a ternary algebra of the 56-dimensional modules
of E7. There is also a scalar product of a (56) and its complex conjugate. E7 can be regarded as the
automorphism group of the combined algebra of ternary products and scalar products.

Ranging over the automorphism groups of the ternary algebra when the module is constructed out of
the four division algebras we find the third line of the magic square

R C H O
Aut. group of the ternary prod. Sp(3) SU(6) SO(12) E7

Dimension of group 21 35 66 133
Dimension of the module X 14 20 32 56

Finally we can generate groups by considering fractional linear representations of these modules[7],
giving nonlinear (coset space) realizations of the exceptional groups F4, E6, E7 and E8 that form the
last line of the magic square. They have the respective dimensions 52, 78, 133 and 248.

The Magic square groups also have many non compact forms. A typical example is the SL(3, R) real
form associated with SU(3) and the non compact groups SL(3, R)×SL(3, R) and SL(3, C) associated
with the compact group SU(3) × SU(3). In general they are subgroups of the complexified forms of
the compact groups. They appear in the couplings of scalar fields in supergravity[8],[9] and also in the
algebras associated with non simply laced lattices[10]. We shall see that they are also connected with the
representations of the supersymmetric kinematical groups in critical dimensions.

Here is one set of a magic square of non compact groups that are subgroups of the non compact group
E8(−24). Note that the number in brackets represents the number of non compact generators minus that
of compact generators.

R C H O
O(2, 1) SU(2, 1) Sp(2, 1) F4(−20)
SL(3, R) SL(3, C) SU∗(6) E6(−26)
Sp(6, R) SU(3, 3) SO∗(12) E7(−25)
F4(+4) E6(+2) E7(−5) E8(−24)

The first line can be replaced by the compact groups O(3), SU(3), Sp(3) and F4 which are also
subgroups of the non-compact groups of the second line. The starred groups are quaternionic groups.
SU∗(6) is isomorphic to the linear group over quaternions SL(3, H). All of these non compact groups
occur in supergravity theories.
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Another remarkable series of critical dimensions is given by JD
2 , the Jordan algebra of 2×2 hermitian

matrices over the division algebras, with D= 1, 2, 4 and 8. They form subalgebras of J8
3 . Here are the

dimensions of the algebras and their automorphism groups.

R C H O
Algebra J1

2 J2
2 J4

2 J8
2

Real Dim. of alg. 3 4 6 10
Aut. group O(2) O(3) O(5) O(9)
[covering group]: [U(1)] [SU(2)] [Sp(2)] [spin9]

These groups are seen to be subgroups of the first lines of the magic squares for compact and non
compact groups given above. To look for the corresponding subgroups of the second line of the non-
compact magic square, we start from the well known case of J2

2 , the algebra of 2× 2 hermitian complex
matrices. An example is the matrix associated with the momentum p that can be written

p = p0 + ~σ · ~p =

(
po + p3 p1 − ip2
p1 + ip2 po − p3

)
(16)

in terms of the Pauli matrices. The unitary representations of the Poincaré group are built through the
use of the little groups that leave the standard form of p invariant. In the time-like and space-like cases p
can be brought along its time component or one space-like components respectively, being left invariant
by the corresponding groups SO(3) and SO(2, 1). These are just the automorphism groups of the first
lines of the magic squares given above. Similarly, the momentum vectors in critical dimensions are
represented by hermitian 2 × 2 matrices over the division algebras. They are (D + 2) dimensional
vectors in the Minkowski spaces (D + 1, 1). The transverse part of the vector (p⊥), relevant in the
massless, light-like case is represented by an element of the division algebra of dimension D[11]. The
Lorentz group in critical dimensions is given by linear, homogeneous transformations that preserve the
hermiticity of p and its Minkowski norm given by

Det p = p p̄, p̄ = −p+ I Trp , (17)

with I being 2× 2 identity matrix.
In d = 4 (D = 2) dimensions it is given by

p′ = L p L†, (DetL = 1) , (18)

where L is a unimodular complex 2× 2 matrix. Then we have

L ε SL(2, C) ∼ SO(3, 1) . (19)

For d = 3 it is a real unimodular matrix representing SL(2, R) ∼ SO(2, 1), while for d = 6 it
is a quaternionic unimodular matrix SL(2, H) ∼ SO(5, 1). For d = 8 the matrix is octonionic and
the linear action on p must also involve associators[12]. The action with associators is contained in the
automorphism group G2, the 14 parameters of which must be added to the 4× 8− 1 = 31 parameters of
a 2×2 octonionic matrix, giving a linear group of dimension 45, namely O(9, 1). Thus we can construct
the following table:
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Algebras J1
2 J2

2 J4
2 J8

2

Minkowski dim. 3 4 6 10
Norm preserving

group SL(2, R) SL(2, C) SL(2, H) Spin(9, 1)
[Lorentz group] [∼ SO(2, 1)] [∼ SO(3, 1)] [∼ SO(5, 1)] [∼ SO(9, 1)]

Little group for
massless particle T1 IO(2) IO(4) IO(8)
Helicity group · · · O(2) O(4) O(8)

In this table I means the inhomogeneous group, Tn is the translation group in n dimension and the
helicity group is the homogeneous part of the little group for massless particles which preserves p0+pd−1.
The helicity groups are seen to be the norm groups of the division algebras associated with the critical
Minkowski dimensions. The Lorentz groups are seen to be subgroups of the second line of the magic
square of the non compact groups, including O(9, 1) which is a subgroup of E6(−26). We have already
seen that the little groups are subgroups of the first line of the same table.

2. Spinors in Critical Dimensions
For a massless particle the momentum is light-like, so that

p p̄ = Det p = 0 (20)

and the hermitian matrix p factorizes in the form

p = ψ ψ† , ψ =

(
ψ1

ψ2

)
, ψ† = (ψ̄1 ψ̄2) . (21)

Here the components ψ1 and ψ2 of the spinor ψ are elements of the division algebras. The bar denotes
division algebra conjugation. Under a Lorentz transformation

ψ′ = L ψ . (22)

In the octonionic case (d = 10) it is understood that the automorphism group G2 of octonions is
adjoined to the left multiplication by L. The real dimensions of these spinors is 2D = 2(d− 2) where D
is the dimension of the division algebra. Let us also display the dimensions of the vector combined with
a spinor, a combination that appears for representing a point in superspace.

Minkowski
(vector dimension d) 3 4 6 10
Spinor dimension 2 4 8 16
Superspace dimension 5 8 14 26

The spinor dimensions correspond to those of a real spinor in d = 3, a Weyl or Majorana spinor in
d = 4, a Weyl spinor in d = 6 and finally a spinor that is both Weyl and Majorana in d = 10. The
superspace dimensions are the same as those for traceless 3 × 3 Jordan algebras of the first line of the
magic square. This suggest a correspondence between a superspace point z (with vector component x
and spinor component θ) and a matrix F of Jordan form

F =

(
x θ
θ† a

)
(23)
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where the constant a is determined by a Lorentz invariant condition in terms of x and θ, such as

Det F = 1 . (24)

At this stage the correspondence is suggestive but not exact, as the components of θ for a superspace
point are Grassmann numbers while they are real or complex numbers for an element of a Jordan algebra.
To make the correspondence more precise we shall have to generalize the Jordan algebra to a graded
Jordan algebra[13]. On the other hand, the 26-dimensional bosonic string vector can be represented by
an element of the usual exceptional Jordan algebra of the form

J =

(
y u
u† b

)
, Det J = 1 , (25)

where y is a 2×2 hermitian matrix, b is a scalar and u a 2×1 matrix over octonions. When the octonions
are real we have seen that J is a (27) module for E6(−26). J−1 and hence J × J is a (2̄7) module. It is
known that the determinant of J is a multiplicative cubic norm for the exceptional Jordan algebra. We
have

I Det J = (J × J). J, Det J =
1

3
Tr [(J × J). J ] . (26)

With the vector-spinor decomposition of J given in Eq. (25), using Eq. (8), one finds

J × J =

(
bȳ − uu† −ȳu
−u†ȳ yȳ

)
(27)

and

Det J = b ȳy − Sc (u†ȳu) . (28)

Note that the last formula is unambiguous because of the identity

Sc [u† (ȳu)] = Sc [(u†ȳ) u] =
1

2
(u†ȳ) u +

1

2
u† (ȳu) . (29)

The bar notation over a 2× 2 hermitian matrix has been defined as in eq.(17) by

y =

(
y+ y⊥
ȳ⊥ y−

)
, ȳ =

(
y− −y⊥
−ȳ⊥ y+

)
, (30)

and u† has the same meaning as in eq.(21).
Let us emphasize that when J is a hermitian matrix over real octonions it corresponds to the (27)

representation of E6(−26) and Det J is invariant under this noncompact group. Hence, it is also invariant
with respect to its O(9, 1) subgroup under which y transforms like a vector, u like a Weyl-Majorana
spinor and b like a scalar. There is an independent real (2̄7) representation of E6(−26) that has the same
vector-spinor-scalar decomposition in 10-dimensional Minkowski space. Since the (2̄7) involves a right
handed spinor instead of the left handed spinor u, these two representations will be assigned different
chiralities.

We will leave out some further discussion on the Poincaré group and superPoincaré group in (D+1,1),
the covariant superstring action, bosonic string formalism, and compactification and discretization for
another publication due to lack of space. For further works on octonions we refer our reader to references
at the end of this paper.
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3. Remarks
We hope to have shown that there is a one to one correspondence between a graded matrix representation
of the super Poincaré group and division algebras for Minkowski dimensions (D+1, 1) in which classical
superstring theories and classical super Yang-Mills theories exist, D denoting the dimension of the
division algebra. On the other hand classical bosonic strings can exist in any dimension. However,
if closed bosonic strings are associated with superstrings to form classical heterotic strings, then the
dimension of the bosonic string must be 3D + 2. The internal symmetry group of the classical heterotic
string becomes a group of rank 2D. Quantization only works for D = 8 (octonionic case) but
paraquantization might be possible in the other cases[2]. The internal symmetry group was obtained
by discretizing 2D elements of a certain subgroup of O(3D + 1, 1). If a bosonized ghost dimension is
added as in the case of covariant treatment, then the Lorentz group is extended to O(3D + 1, 2). For
D = 8, the complex Lorentz group admits as subgroup a real form of E6 that has the same Lorentz
subgroup O(9, 1) as O(25, 2). The free bosonic Lagrangian than becomes invariant under both O(25, 2)
and E6(−26). This approach establishes a link between classical heterotic strings and the groups of the
magic square associated with Jordan algebras, and also allows a uniform treatment of the bosonic and
superstring sectors of the heterotic string.
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