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Abstract. The geometrically magnetic frustrations and quantum thermal entanglement of
antiferromagnetic metal-containing compounds are considered on a diamond chain. We
researched the magnetic and thermal properties of the symmetric Hubbard dimers with
delocalized interstitial spins and the quantum entanglement states. It is presented magnetization
plateaus and negativity in spin-1 Ising-Heisenberg model using transfer matrix technique.
Applying the dynamic system approach we study the magnetic curves, Lyapunov exponents and
superstable point in the two-dimensional mapping for the partition function of spin-1 classical
and Ising-Heisenberg models at T → 0 on a diamond chain.

1. Introduction
The magnetic plateau and entanglement properties exhibit common features observable

via antiferromagnetic coupling constant, external magnetic, crystal (single-ion anisotropy)
fields and chemical potential. The family of known non-trivial quantum effects in the
condensed matter physics is enriched with the novel phenomenonintermediate plateaus in the
magnetization processes [1, 2]. The observation of a 1/3 magnetization plateau in natural
azurite Cu3(CO3)2(OH)2 has been proposed as a realization of the exotic diamond chain
of antiferromagnetically coupled spin-1/2 Cu+2-monomers [3, 4]. The theoretical study of
magnetization plateaus in azurite were obtained by using the density functional theory [5, 6],
mean-field-like treatment based on the Gibbs-Bogoliubov inequality [7] , the density-matrix
renormalization-group (DMRG) technique [8,9] and the decoration-iteration transformation [10].
On a diamond chain there were observed the plateaus of electron density as a function of chemical
potential on spinless fermion, extended Hubbard and magnetization as a function of external
magnetic field on distorted Ising-Hubbard models [11–13]. The magnetic behavior and magnetic
susceptibility of the metal-containing complex [Ni3(fum)2 − (µ3 − OH)2(H2O)4]n · (2H2O)n
was measured [14]. The spin-1 diamond-chain of the compound is characterized by both
ferromagnetic and antiferromagnetic exchanges. In this article we would get magnetization and
quadrupole moment plateaus at low temperatures as a function of external magnetic field and
single-ion anisotropy. Quantum entanglement is considered to play a key role for understanding
of strongly correlated quantum systems, quantum phase transitions and collective quantum
phenomena in particular many-body spin and fermionic lattice systems [15–17] especially in
antiferromagnetic models. Another important observation is the strong relationship between
magnetic and entanglement properties of the antiferromagnetic system on diamond chain models
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[18–25]. We also considered magnetic behavior of spin lattice models applying the dynamic
system method [26–28]. The dynamical approach represents an essential tool in the theory of
phase transitions and criticality and it enhanced our understanding of the phase structure and
critical properties of spin models. In the case of antiferromagnetic coupling between lattice
nodes of the three site interaction Ising and the Q-state Potts models (Q < 2) on Husimi
and Bethe lattices exhibit a complex behavior, featuring doubling bifurcations, chaotic regimes,
intermittency, and superstable points [29,30]. The plateaus of the maximal Lyapunov exponent
coincide with magnetization plateaus on a kagome chain for multidimensional mapping [31].
The existence of magnetization plateau has been observed at one third of the saturation
magnetization in the antiferromagnetic spin-1/2 IsingHeisenberg model on a diamond chain
using the multidimensional mapping [32]. It has been detected that the maximal Lyapunov
exponent exhibits plateau like magnetization one and found the existence of the supercritical
point at T → 0 in the absence of the external magnetic field corresponding to phase transition
point.

In the present paper we mainly deal with the quantum entanglement and magnetic curve
behavior of symmetric Hubbard dimers with delocalized interstitial electrons and spin-1 Ising -
Heisenberg model using transfer matrix technique on a diamond chain. Applying the recurrence
relation of the two-dimensional mapping we study magnetic plateau and their relation to
maximal Lyapunov exponents, superstable point of spin-1 classical and Ising - Heisenberg models
on a diamond chain. The paper is organized as follows. In Section 2 the phase behavior of the
diamond chain is presented of a symmetric Hubbard-Ising model and studied the magnetic
and thermal properties. We researched the quantum entanglement of electrons in Hubbard
dimers and dependence of Hamiltonian parameters as well as on temperature. We give an exact
solution of spin-1 Ising - Heisenberg model by means of the transfer-matrix method and study
the magnetization plateaus and negativity in Section 3. In Section 4 we apply the dynamical
system approach in researching magnetic plateaus and maximal Lyapunov exponent plateaus.
It is observed that the superstable coincide with phase transition point at T → 0 in the spin-1
classical and Ising-Heisenberg models on the diamond chain. Some concluding remarks are given
in section 5.

2. Symmetric diamond chain with delocalized Hubbard interstitial spins
The Hamiltonian of symmetric Ising- Hubbard model [33] describing the diamond chain (Fig.

1)is

H =
N∑
i=1

Hi,i+1, where

Hi,i+1 = −t̃
(
a+i↑bi↑ + ai↑b

+
i↑ + a+i↓bi↓ + ai↓b

+
i↓

)
+ Ṽ nainbi + Ũ (nai↑nai↓ + nbi↑nbi↓) (1)

+J̃mscisci+1 + J (szai + szbi) (sci + sci+1)− µ̃ (nai + nbi)− h̃

(
szai + szbi +

sci + sci+1

2

)
.

Here a+iσ (aiσ) and b+iσ (biσ) are the electron creation (annihilation) operators with the spin
value σ=(↑, ↓), respectively on sites ai and bi. The naiσ = a+iσaiσ and nbiσ = b+iσbiσ are the
electron number operators, respectively on sites ai and bi and t̃ is the hopping amplitude. We

denote nαi = nαi↑ + nαi↓, s
z
αi =

1

2
(nαi↑ − nαi↓), (α = a, b) and sci = ±1

2
. Here µ̃ and h̃ are

the values of the chemical potential and the external magnetic field (h̃ = gµBBz) respectively.

The terms which contain Ũ and Ṽ correspond respectively to one–site and two–site Coulomb
repulsions in the Hubbard dimer(interstitial spins). The terms which contain the symmetric
coupling J that describe Hubbard dimer interactions with nodal Ising-type spins. The term
containing J̃m describes two nodal Ising–like spins interaction.
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Figure 1. Two sites of the Hubbard dimer are denoted as a– and b–. There is an electron
hopping between them with amplitude t. One–site (U) and two–site (V ) Coulomb interactions
are also present. The diamonds are connected to each other at nodal c–sites. There is an Ising–
like direct interaction with Jm coupling constant between the nodal sites. The nodal sites are
also connected to a– and b–sites by means of Ising–like interactions with coupling constant J .

From the identity

Ṽ nanb + Ũ (na↑na↓ + nb↑nb↓) =
(
Ũ − Ṽ

)
(na↑na↓ + nb↑nb↓) +

n (n− 1)

2
Ṽ , (2)

(where n = na↑ + na↓ + nb↑ + nb↓ is the total number of electrons in the Hubbard dimer), it

follows that the differences between energy levels depend on Ũ − Ṽ ≡ W̃ only, if n is fixed. In
particular, for fixed n ̸= 2, (na↑na↓ + nb↑nb↓) is constant and the behavior of the system does

not depend on W̃ at all, which is physically obvious.
As all Hi,i+1 commute, therefore the partition function can be written as:

ZN = Tr
(
e−βH

)
=

∑
sci=± 1

2

N∏
i=1

Tra,b

(
e−βHi,i+1(sci,sci+1)

)
= TrVN , (3)

where V =

(
V (+,+) V (+,−)
V (−,+) V (−,−)

)
is the transfer matrix, with V (±,±) =

∑
j
e−βEj(±,±),

where Ej (±,±) ≡ Ej

(
±1

2 ,±
1
2

)
are the eigenvalues of the Hi,i+1 (±,±) ≡ Hi,i+1

(
±1

2 ,±
1
2

)
Hamiltonian.

In the thermodynamic limit the free energy per diamond is

F = lim
N→∞

−T

N
lnZN = − lnλ1, (4)

where λ1 =
1

2

(
TrV +

√
(TrV)2 − 4 detV

)
is the largest eigenvalue of the transfer matrix.

On this basis it is easy to calculate magnetization and specific heat. Analogously we use
the following expression for reduced density matrix of a Hubbard dimer to study entanglement
properties:

ρ′ =
1

λ1

[
e−βH(+,+) + e−βH(−,−)

2
+ e−βH(+,−) sin 2θ +

+
e−βH(+,+) − e−βH(−,−)

2
cos 2θ

]
, (5)
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with sin 2θ =
2V (+,−)√

(TrV)2 − 4 detV
, cos 2θ =

V (+,+)− V (−,−)√
(TrV)2 − 4 detV

.

In the sequel we rescale all quantities by the J absolute value, substituting t = t̃/|J |,
h = h̃/|J |, µ = µ̃/|J |, U = Ũ/|J |, V = Ṽ /|J |, W = W̃/|J | and Jm = J̃m/|J |.
The magnetization curves at nonzero temperature are derived from m = −∂F

∂h . Here we take
the number of electrons in a Hubbard dimer fixed and equals to 2. Fig. 2 shows possible forms
of magnetization curves at zero and nonzero temperatures. The following types of plateaus
exist here: at 0, 1/3 and 2/3 values and of classical (electrons in the Hubbard dimers are not
entangled and their spin projections have definite value at each site) and non-classical (electrons
in the Hubbard dimers are entangled) types.

The entanglement of formation in the special case of two spin-1/2 particles has the analytical

expression [35]: EF = H
(
1+

√
1−C2

2

)
, where H(x) = −x log2(x)−(1−x) log2(1−x), and C is the

quantity called concurrence. For fixed values of t and Jm we have plotted the concurrence as a
function of the temperature and the external magnetic field (Figs. 3). The thermal entanglement
becomes significantly large when the energy level of the (non-entangled) ground state and the
nearest energy level (corresponding to the entangled state) are close to each other.
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Figure 2. Dependence of the diamond chain magnetization (m) (per diamond in gµB units)
on the external magnetic field (h) for different values of the internodal change interaction (Jm)
at T = 0. The fixed chain parameters are t = 0.3, W = 0, µ = 0. The case of T = 0.1 is also
shown. Thermal fluctuations smoothen magnetization jumps. Bold lines represent at T = 0 and
solid, dashed lines represent the different values of Jm accordingly.

3. Magnetization plateaus and negativity in spin-1 Ising - Heisenberg model
Let us consider spin-1 Ising-Heisenberg model on a diamond chain (see Fig. 6) without

biquadratic coupling terms using the transfer matrix technique. The magnetic behavior of
homometallic molecular ferrimagnet [Ni3(fum)2−(µ3−OH)2(H2O)4]n ·(2H2O)n was measured
by [14] without single-ion anisotropy parameters. We observe magnetization plateau and thermal
quantum negativity in the presence of an external magnetic fields and single-ion anisotropy
terms. The Hamiltonian is equal to the sum over block Hamiltonians H =

∑
iHi with

Hi = JS⃗a,iS⃗b,i + J1(S
z
a,i + Sz

b,i)(σ
z
i + σz

i+1) +DH((Sz
a,i)

2 + (Sz
b,i)

2) +
DI

2

(
(σz

i )
2 + (σz

i+1)
2
)

(6)

− hHgµB(S
z
a,i + Sz

b,i)−
hIgµB

2

(
σz
i + σz

i+1

)
,

where Sα
a/b,i (α = x, y, z) are spin-1 operators on the sites with coordinates (a/b, i), while σz

i ’s are

z projections of spin-1 operator resting on the sites i, J denotes the XXX interaction within the
Heisenberg dimer and J1 stands for the interaction between nodal and dimer spins. Coefficients
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a) t = 0.45, Jm = −2 b) t = 0.55, Jm = −2

Figure 3. The dependence of the concurrence from temperature and external magnetic field
for various values of hopping amplitude. Concurrence vanishes in high temperature limit.

DI and DH correspond to the longitudinal crystal(single-ion anisotropy) fields in the z direction.
The gyromagnetic ratio is taken to be g = 2.2 in the plots drawn below, which is more or less
typical for nickel containing compounds. We assume that cyclic boundary condition σN+1 = σ1
is applied. The block Hamiltonians(Hi) are commutative, therefore the partition function can
be written like in equation (3).

After direct diagonalization of the block Hamiltonian Hi one gets the energy spectrum of a
diamond block depending on Ising spins:

E1 = −J − hIgµB

2
(σi + σi+1) +

DI

2

(
σ2
i + σ2

i+1

)
+ 2DH ,

E2,3 = ±J −
(
J1 +

hIgµB

2

)
(σi + σi+1) + hHgµB +DH +

DI

2

(
σ2
i + σ2

i+1

)
,

E4,5 = ±J + (J1 −
hIgµB

2
) (σi + σi+1)− hHgµB +DH +

DI

2

(
σ2
i + σ2

i+1

)
, (7)

E6,7 = J +

(
±2J1 −

hIgµB

2

)
(σi + σi+1)∓ 2hHgµB +

DI

2

(
σ2
i + σ2

i+1

)
+ 2DH ,

E8,9 =
−J ± Λ

2
− hIgµB

2
(σi + σi+1) +

DI

2

(
σ2
i + σ2

i+1

)
+DH ,

where Λ =
√

(2DH − J)2 + 8J2. Knowledge of the spectrum allows us to perform partial trace-

overs along Heisenberg degrees of freedom. Which makes representation ZN =
∑

σi

∏N
i=1 Vσi,σi+1 ,

with Vσi,σi+1 = Trie
−βHi =

∑9
i=1 e

−βEi(σi,σi+1). Vσi,σi+1 ’s may be viewed as components of a
3× 3 transfer matrix:

Vσi,σi+1 =

 V−1,−1 V−1,0 V−1,1

V0,−1 V0,0 V0,1

V1,−1 V1,0 V1,1

 , (8)

where matrix indexes are the three possible projections of Ising spins. Taking into account the
cyclic boundary conditions one may write ZN = Tr(V N ) in transfer matrix notations. Hence
the partition function may be expressed in terms of the transfer matrix eigenvalues:

ZN = λN
1 + λN

2 + λN
3 . (9)

As usual, in the thermodynamic limit N → ∞ only the contribution of the largest eigenvalue
must be considered. Denoting the maximal eigenvalue as λ, the free energy per block for infinitely
long chain takes the form

f = − 1

β
lim

N→∞

1

N
lnZN = − 1

β
lnλ. (10)
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The exact expression of the free energy will allow us to calculate thermodynamic quantities of
the system. In the present paper we will consider the sublattice magnetization and quadrupole
moment of Ising spins and the sublattice magnetization of Heisenberg spins. They are given by

mI = − ∂f

∂hI
, mH = −1

2

∂f

∂hH
, qI =

∂f

∂DI
. (11)

The total magnetization is equal to the average of mI and two mH . To illustrate the
magnetization process in a few interesting cases. We show the magnetization at sufficiently
low temperature (T = 0.01K) as a function of the magnetic field with several plateaus (Fig. 4).
Thermal quantum entanglement (negativity) can be defined as [36]. We have plotted negativity

(a) (b)
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Figure 4. Low temperature (T = 0.01K) magnetization curves in Bohr magneton units when
J1 = DI = 1cm−1 and (a) J = −6cm−1, DH = 1cm−1 (dashed), DH = 2.25cm−1 (dotted), DH = 4cm−1

(solid), (b) J = 0.9cm−1, DH = −1cm−1 (dashed), DH = 0.7cm−1 (dotted), DH = 2cm−1 (solid).

0 20 40 60 80 100 120 140
0.0

0.2

0.4

0.6

0.8

1.0

h �kG

N
e

Figure 5. Negativity via magnetic field for different values of the single-ion anisotropy
DH = 0, 3, 5, 10cm−1 (solid, dashed, dotted-dashed and dotted curves, respectively) at low
temperature T = 10−4K and for J = 2cm−1. Here J1 = DI = 1cm−1.

vs. magnetic field Fig. 5(a) , demonstrating the change of negativity by varying DH as well
as the sharp step like behavior of the entanglement at transitions. The introduction of the
single-ion anisotropy is essential for the observation of magnetic and entanglement properties
for homometallic molecular ferrimagnet [Ni3(fum)2 − (µ3 −OH)2(H2O)4]n · (2H2O)n.

4. Magnetic plateaus and quantum entanglement: Dynamical approach
In this section we utilise two models the spin-1 Ising and Ising-Heisenberg models. Let us

first consider the spin-1 Ising model on diamond chain with free boundary conditions in the

6
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presence of an external magnetic field (see Fig. 6). The Hamiltonian operator of the model is
equal to the summation of the block Hamiltonians and can be written as

H =
N∑
i

Hi =
N∑
i

(J(Sa,iSb,i) +K(Sa,iSb,i)
2 + J1(µi + µi+1)(Sa,i + Sb,i) (12)

+K1((µi)
2 + (µi+1)

2)((Sa,i)
2 + (Sb,i)

2) + ∆((Sa,i)
2 + (Sb,i)

2) + ∆1
(µi)

2 + (µi+1)
2

2

−hH(Sa,i + Sb,i)− hI
µi + µi+1

2
)

Where Sa,i, Sb,i and µi, µi+1 are classic Ising spins and can take the values 1, 0,−1. The
parameter J stands for the linear interactions between the nearest-neighboring Sa,i−Sb,i elements
and J1 is the linear interactions parameter for nearest-neighboring S − µ elements (Sa,i − µi,
Sa,i−µi+1, Sb,i−µi, Sb,i−µi+1). Analogously K and K1 stand for the quadratic interactions. ∆
and ∆1 are the single-ion anisotropy parameters, hI and hH are contributions of a longitudinal
external magnetic field interacting with the Ising spins (Sa,i, Sb,i−hH and µi−hI).This notations
are made to highlight the similarities between the spin-1 Ising and Ising-Heisenberg models. In
our further calculations we will consider the case when K = J , K1 = J1, ∆ = ∆1, hH = hI = h.
The partition function of the system with Hamiltonian (12) is

Figure 6. The procedure for derivation of the Ising (Sa and Sb are white) and Ising-Heisenberg
(Sa and Sb are black) diamond chain. White circles are Ising spins and black are Heisenberg
spins

Z =
∑

µi,Sa,i,Sb,i

exp−βH =
∑
µ0

e−
−hIµ0+∆1µ

2
0

T gn(µ0)
2 (13)

where β = (T )−1, T is the absolute temperature. By cutting diamond chain at µ0 into two
branches gn(µ0) (Fig. 1) the exact recursion relation for the partition function can be derived.
The relation between gn(0) and gn−1(µ1) is given by the following equation.

gn(µ0) =
1∑

µ1=−1

1∑
Sa,0=−1

1∑
Sb,0=−1

exp[−β(J(Sa,0Sb,0) +K(Sa,0Sb,0)
2 + J1(µ1 + µ0)(Sa,0 + Sb,0)+

(14)

K1((Sa,0µ1)
2 + (Sa,0µ0)

2 + (Sb,0µ1)
2 + (Sb,0µ0)

2) + ∆((Sa,0)
2 + (Sb,0)

2) + ∆1µ
2
1

−hH(Sa,0 + Sb,0)− hIµ1)] ∗ gn−1(µ1)
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By introducing the following notation

xn =
gn(1)

gn(0)
, yn =

gn(−1)

gn(0)
(15)

we can get two-dimensional recursion relation for the partition function

xn = f1(xn−1, yn−1), f1(x, y) =
a1 + a11x+ a12y

b0 + b1x+ b2y
(16)

yn = f2(xn−1, yn−1), f2(x, y) =
a2 + a21x+ a22y

b0 + b1x+ b2y

where the coefficients are easily calculated from equations (14) and (15).
Recursion relation (16) plays a crucial role in our further investigation because the order

parameters magnetic and quadrupole moments can be expressed through two-dimensional
rational mapping. The equations for total magnetic and quadrupole moments are expressed
similar as [34].

Figure 7. Classical Ising spin-1
quadrupole moment(p) for J = 2, J1 =
1, h = 0, T = 0.01.

Figure 8. Classical Ising spin-1
magnetic moment(m) for J = 2, J1 =
1,∆ = 1, T = 0.01.

Now lets discus the spin-1 Ising-Heisenberg model on diamond chain with free boundary
conditions in the presence of an external magnetic and crystal(single-ion anisotropy) fields (see
Fig. 6). This two models are very similar therefore this time our narration will be more concise.
The blocks of the diamond chain consist of two Heisenberg interstitial spins (Sα

a,i and Sα
b,i). The

z components of interstitial spins are coupled with nearest-neighboring nodal Ising spins (µi and
µi+1). Like in the previous model the Hamiltonian of the system may be represented as a sum
over block Hamiltonians

H =

N∑
i

Hi =

N∑
i

(J(Sx
a,iS

x
b,i + Sy

a,iS
y
b,i +DSz

a,iS
z
b,i) +K(Sx

a,iS
x
b,i + Sy

a,iS
y
b,i +D1S

z
a,iS

z
b,i)

2 (17)

+J1(µ
z
i + µz

i+1)(S
z
a,i + Sz

b,i) +K1((µ
z
i )

2 + (µz
i+1)

2)((Sz
a,i)

2 + (Sz
b,i)

2) + ∆((Sz
a,i)

2 + (Sz
b,i)

2)

+∆1
(µz

i )
2 + (µz

i+1)
2

2
− hH(Sz

a,i + Sz
b,i)− hI

µz
i + µz

i+1

2
)

In this equation, Sα
a,i, S

α
b,i (α = x, y, z) and µz

i represent relevant components of Heisenberg and

Ising spin-1 operators. In equation (17) J is the linear Heisenberg interaction term, K is the
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quadratic interaction term parameter, D and D1 are anisotropy parameters, J1 is the interaction
parameter between the nearest-neighboring Ising and Heisenberg spins, ∆ (∆1) is the single-ion
anisotropy parameter of Heisenberg (Ising) spins and the parameter K1 is the analogue of a
quadratic Ising interaction term. The last two terms in the Hamiltonian are contributions of
a longitudinal external magnetic field interacting with the Heisenberg and Ising spins. It is
important to notice that the commutation relation between different block Hamiltonians is zero
([Hi,Hj ] = 0). Furthermore it can be shown that the block Hamiltonian commutes with Ising
and Heisenberg spins, i.e. [Hi, µ

z
i ] = [Hi, S

z
a,i+Sz

b,i] for any values of the model parameters J , K
, J1, K1, D, D1, ∆, ∆1 and magnetic field, but the block Hamiltonian and quadrupole moment
commute,[Hi, (S

z
a,i)

2 + (Sz
b,i)

2] = 0, only when J = KD1. In the present work we consider only

the case when J = K , J1 = K1, D = D1 = 1, ∆ = ∆1, hH = hI = h. Equation (2) and (3) are
conserved for this model if instead of µi we insert µz

i considering the fact that here we also cut
the diamond chain at µ0 (see Fig. 6). From them its easy to calculate the equivalent of equation
(14)

gn(µ0) =
∑

µ1,Sa,0,Sb,0

exp[−β(J(Sx
a,0S

x
b,0 + Sy

a,0S
y
b,0 +DSz

a,0S
z
b,0) +K(Sx

a,0S
x
b,0 + Sy

a,0S
y
b,0 +D1S

z
a,0S

z
b,0)

2

(18)

+J1(µ
z
1 + µz

0)(S
z
a,0 + Sz

b,0) +K1((S
z
a,0µ

z
1)

2 + (Sz
a,0µ

z
0)

2 + (Sz
b,0µ

z
1)

2 + (Sz
b,0µ

z
0)

2) + ∆((Sz
a,0)

2 + (Sz
b,0)

2)

+∆1(µ
z
1)

2 − hH(Sz
a,0 + Sz

b,0)− hIµ
z
1)] ∗ gn−1(µ1)

by inserting the eigenvalues of the operators and by using the equivalents of equations (15,16)
the recursion relation has the following form

xn = f1(xn−1, yn−1), f1(x, y) =
a1 + a11x+ a12y

b0 + b1x+ b2y
(19)

yn = f2(xn−1, yn−1), f2(x, y) =
a2 + a21x+ a22y

b0 + b1x+ b2y

where the coefficients are easily calculated from equations (18).
The equations for total magnetic and quadrupole moments are expressed similar as [34].

Figure 9. Quantum Ising-Heisenberg
spin-1 quadrupole moment(p) for J =
2, J1 = 1, h = 0, T = 0.01.

Figure 10. Quantum Ising-Heisenberg
spin-1 magnetic moment(m) for J =
2, J1 = 1,∆ = 1, T = 0.01.

In the second part of this section we will focus on the thermodynamical equilibrium
description of the spin-1 Ising/Ising-Heisenberg model on a diamond chain, by studying infinite-
size systems. Lyapunov exponents have a crucial role in the study of ”stability” or ”instability”
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of systems. Lyapunov exponents are the growth rate of an infinitesimal perturbation on a
reference trajectory. The following values of maximal Lyapunov exponents can be observed
during the investigation (λ = max(λi)).
λ < 0 negative Lyapunov exponents show that the system is dissipative or non-conservative.
The systems with more negative values of Lyapunov exponent are more stable. If λ = −∞
means that we have superstable fixed and superstable periodic points. λ = 0 corresponding
to neutral fixed point. At this value of Lyapunov exponents the second-order phase transition
takes place. λ > 0 corresponding to unstable and chaotic systems. In general case if we have a
N dimensional map the i− th Lyapunov exponent is calculated with the following equation

λi = lim
n→∞

logHi

n
, H = J(x0)J(x1)...J(xn) (20)

where Hi is the i− th eigenvalue of H and J(xk) is the Jacobian matrix of our N dimensional
map after k iterations from the initial point x0. In some cases when the eigenvalues of H are
complex numbers and its reasonable to use H†H († denotes the transpose operator) instead of

H. In that case Lyapunov exponents will have λi = limn→∞
logHi

2n form.
Superstable points are particularly interesting studying maximal Lyapunov exponent in

classical and quantum cases. In this aspect the above mentioned models have many similarities
as well as fundamental differences. There is a superstable point in the spin-1 Ising model at
h = 0, J = 2, J1 = 1, T → 0 and ∆ > 0. By computational research it’s shown that for
many antiferromagnetic configurations there is a superstable point if ∆ > 0 which vanishes
for ∆ < 0 configurations. Ising-Heisenberg models behavior is similar, many antiferromagnetic
configurations have superstable points but unlike the Ising model here are two superstable
points and they vanish if approximately ∆ < −1.75 (this point is for h = 0, J = 2, J1 = 1
configuration). The fact that there is a magnetization plateau around supercritical points in the
classical (see Figures 8, 11) and quantum (see Figures 10, 12) cases is of great importance.

Figure 11. Classical Ising spin-1
maximal Lyapunov exponent for J =
2, J1 = 1,∆ = 1, T = 0.03.

Figure 12. Quantum Ising-Heisenberg
spin-1 maximal Lyapunov exponent for
J = 2, J1 = 1,∆ = 1, T = 0.03.

5. Conclusions
In this paper we study symmetric IsingHubbard, spin-1 Ising and Ising-Heisenberg models on

a diamond chain using transfer matrix and dynamical system methods for antiferromagnetic
case. The behavior of the magnetization plateaus and thermal quantum entanglement are
observed. It’s detected the behavior of maximal Lyapunov exponent curves and superstable
points connections with magnetization plateaus at T → 0 in classical and quantum cases. It
becomes exponentially more difficult to study the model with dynamical approach regarding
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the case of T < 0.01, during calculations some elements become smaller than 10−1000. Similar
problems arise for greater values of J , J1, ∆ and h. This type of complications may justify the
use of other non-standard approaches in the future.
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Phys. Rev. Lett. 100 117202
[5] Jeschke H et al. 2011 Phys. Rev. Lett. 106 217201
[6] Kang J, Lee C, Kremer R K and Whangbo M-H, 2009 J. Phys.: Condens. Matter 21 392201
[7] Ananikian N, Lazaryan H, Nalbandyan M 2012 Eur. Phys. J. B 85 223
[8] Gu B and Su G 2007 Phys. Rev. A 75 174437
[9] Takano K, Kubo K and Sakamoto H 2003 J. Phys.: Condens. Matter 15 5979
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