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Abstract. The paper considers the problem of swarm aggregation of autonomous 
robots with the use of three methods based on the analogy of the behavior of 
biological objects. The algorithms substantiating the requirements for hardware 
realization of sensor, computer and network resources and propulsion devices are 
presented. Techniques for efficiency estimation of swarm aggregation via space-time 
characteristics are described. The developed model of the robot swarm reconfiguration 
into a predetermined three-dimensional shape is presented. 

1. Introduction 
The concept of swarm robotics was formed on the basis of scientific paradigms, such as multi-agent 
technology and swarm robotics, where the principles of the decentralized functioning of autonomous 
groups of robots based on pairwise interactions were first formulated. The characteristic feature of 
swarm robotics is the use of heterogeneous unified mobile robotic systems that solve different 
problems and have different on-board resources and propulsion devices. In the field of multi-agent 
swarm robotics, multi-agent technologies are used to simulate the interaction of large groups of simple 
homogeneous robots. The limited resources of individual robots significantly affect the configuration 
and capabilities of the system. However, the distributed swarm intelligence, which is based on data 
retrieved during mass pairwise interactions of robots, ensures that a swarm exists and solves the 
required tasks. 

Let us consider some tasks which require different numbers of robots to solve them. Systems 
composed of a large number of autonomous agents (robots) may be used to perform collective tasks 
when the tasks can not be performed by a single robot, or they can be performed much more 
efficiently by a group of robots. In [1], the following task categories for robots are defined: 

1) Tasks that are exclusively performed by one agent; 
2) Tasks that can be performed more efficiently by a large number of agents; 
3) Tasks traditionally performed by a large number of agents; 
4) Tasks requiring a large number of agents. 

Figure 1 shows examples of problems that can be solved by using single robots and robotic swarm 
interaction. Swarm robotics focuses on the last three categories. Most studies have shown [2,3] that the 
use of a large number of robots for executing a task allows working with robots characterized by 
simplified functionality. If a single robot solves the problem, it usually has a more complex structure. 
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In recent years, the principles of swarm intelligence have been widely studied and implemented to 
solve various tasks by a group of autonomous robots using the so-called distributed approach (without 
a centralized group coordination) [2-4]. 
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Figure 1. Classification of tasks performed by robots 
 

2. Robot aggregation methods 
Let us consider the problem of decentralized cooperation of robots when aggregated. Self-aggregation, 
i.e. the grouping of a certain number of autonomous objects in one place is a very frequent behavioral 
pattern in the natural world [5, 6]. An example of aggregation of autonomous robots is shown in 
Figure 2. 

 

Figure 2. An example of aggregation of autonomous agents 
 

As a rule, the aggregation problem is studied either as an independent problem, or as part of more 
specialized tasks implying grouping a number of agents. Hereinafter, self-organized groups of robots 
will be called aggregates in accordance with the common terminology [7, 8]. The analysis of 
approaches to the aggregation of a robot swarm has shown that the most effective approaches include 
the method of virtual forces, probabilistic methods and evolutionary methods. Let us consider them in 
more detail. 

2.1. The method of virtual forces 
The behavior of autonomous robots is often modeled with the use of the method of virtual forces. It is 
based on calculating the forces that determine the motion of robots relative to each other taking into 
account the location of the surrounding objects. Many organized groups of animals (for example, 
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swarms of insects, flocks of birds, schools of fish) can be modeled with the help of attractive forces 
(due to which neighboring animals tend to stay close to each other) and repulsive forces (which 
prevent the occurrence of collisions between animals) [7] . Each autonomous robot moves according 
to the force acting on it from the neighboring robots and depending on the distance between them. 
Typically, repulsive forces act at short distances, while attractive forces act at distances greater than 
some predetermined value. 

The method of virtual forces is successfully used for the formal description of the aggregation of a 
robot swarm [8-10]. However, its realization in systems with real robots creates a series of strict 
requirements for sensors of each robot, which are difficult and expensive to implement. The most 
simple robots with autonomous sensors are characterized by a low visibility range, which greatly 
reduces their ability to distinguish between the other robots in the environment. Errors may occur 
when determining the relative position of agents in the environment, especially when using infrared 
sensors. Moreover, mechanical constraints create the so-called saturation effect in robot’s actuators, 
which limits the amplitude of input signals to regulate robot’s movement [9]. Despite these limitations 
of sensors, the method of virtual forces is widely used to control the movements of robots in the 
simplest systems [6]. 

2.2. Probabilistic methods 
In the probabilistic approach, the behavior of each robot has a random component and is adjusted in 
the process of robot’s interaction with the environment. This type of behavior is often found in the 
natural world in social insects such as bees or cockroaches. On the basis of observations of social 
insects behavior, probabilistic algorithms were created to control movements of robots. These 
algorithms are based on a finite state machine (FSM) with two main states -  "go" and "wait" [7]  - 
which correspond to behavioral algorithms. In some cases, the state "go" is divided into two states: 
when a robot tries to get close to other robots or, conversely, to move away from the neighbors [8]. 
The decision to change the state can be made completely at random, or based on local signals (e.g. the 
presence of robots around), or more complex algorithms and signaling mechanisms. A designer of 
swarm usually chooses the parameters of the finite state machine, such as probability of switching 
between states; however, recently there have been alternative methods based on automatic techniques 
for determining parameters [11]. 

A common characteristic of all probabilistic aggregation algorithms is the presence of unstable 
aggregates, which robots are constantly entering and leaving. Aggregation dynamics occurs due to 
changes in the random behavior of the robot while detecting adjacent robots. While disaggregated 
robots usually move in space randomly, dynamics of aggregated robots is deterministic. However, a 
random component of the behavior of aggregated robots is often necessary for the formation of small 
amounts of larger aggregates to avoid situations in which the presence of small aggregates does not 
allow robots to be attached to larger aggregates. In the studies, where FSM-based algorithms are not 
used, usually there is no clear distinction between the aggregated and non-aggregated robots. 
However, the swarm dynamics can be determined by a special metric, such as the average distance 
between robots; and the randomness of robot’s movement can be changed on a continuous scale [12]. 

2.3. Evolutionary methods 
In the case of the evolutionary control method, aggregation dynamics is achieved by using robot 
controllers, the parameters of which are selected in the process of artificial evolution. Examples of the 
controllers, using this method, are neural networks. Depending on the algorithm being used, the sensor 
inputs may include devices able to receive information about the environment, and the outputs of 
actuators may include devices allowing robots to communicate with each other. Examples of 
algorithms, used for the method of artificial evolution, are the genetic algorithm or tournament 
selection [13-14]. Artificial evolution applies the standard paradigm of the natural evolution of 
population in the wild. This paradigm is based on the concept of adaptation, which determines the 
ability of a selected population of individuals to adapt to the task. 
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In contrast to the evolutionary method based on the concept of adaptation, the novelty search 
method implies a privileged position of those robots, whose behavior differs from the behavioral 
patterns in previous generations. This method helps to prevent possible negative consequences of the 
approach based on the concept of adaptation, in which the local maximum of the fitness function in the 
parameter space may exclude the possibility of studying all the other parts of this space and thus limit 
the evolutionary process. In [15], the novelty search algorithm is applied to solve the aggregation 
problem, and the behavioral characteristic of a selected population is based on the metrics, such as the 
average distance from each robot to the center of masses of all the robots or the total number of 
aggregates. These parameters were measured several times in the simulation process, and their values 
(average values of different simulations performed) were added to the vector of the behavioral 
characteristic used to determine the similarity of different behavioral patterns. The experimental 
results of the simulation with the use of the novelty search algorithm and the adaptation algorithm 
have shown that the latter algorithm is better at finding the optimal parameters to perform the task of 
aggregation for many "generations". However, the novelty search algorithm has proved to be better at 
an early stage of evolution, and has only slightly reduced its performance in subsequent populations, 
which generally has given results close to the evolutionary method based on adaptation. 

Novelty search methods are based on the determination of similarities between robot’s behavioral 
patterns, which helps detect the novelty of the behavior of each individual robot. In [16], two methods 
for similarity determination are presented, which do not depend on a certain level of complexity of a 
swarm problem and, therefore, can be used without a clearly defined task. Both methods are based on 
the assessment of the state of a neuro-controller mounted on each robot. This state is defined as a 
vector of controller’s inputs and outputs for a certain period of time. The first method, called a 
combined state count, characterizes the behavior model discrediting the possible states of the 
controller and calculates the occurrence of each state (over time) during the experiment conducted. 
The second method is called a sampled average state and is based on the calculation of the vector 
which characterizes the average state of a robot swarm (i.e. the state obtained by averaging the states 
of all robots) measured over the specified time intervals. Applied to solve the aggregation problem, 
both methods have shown the results comparable with those when using the method for determining 
domain-specific similarity of robots. 

3. Examples of algorithms of robot aggregation 
In free aggregation algorithms, robots have to come together, but there are no preferences regarding 
the meeting point. Accordingly, the robots can come together with the same probability in any part of 
the area where they move. 

A widely studied probabilistic aggregation algorithm is largely based on observations of the 
behavior of cockroaches. In a simplified model of cockroach aggregation, these insects move 
randomly in space and stop at a location depending on the detected number of neighbors. Probability 
of a stop is a function that depends on the number of robots detected within a certain radius of the 
robot. The larger the number of robots, the greater the likelihood of stopping. Conversely, a stopped 
robot can continue to move accidentally in space at any time, possibly even leaving the aggregation 
group. The less the number of adjacent robots, the greater the probability of transition to the moving 
state. Accordingly, switching from the waiting mode occurs in two cases: if the robot no longer sees 
the other robots around it, or if the robot has neighbors, it can switch to the state of free movement 
with a priori given probability. In such a simple behavioral pattern, free movement of robots in a 
certain region and their collisions with each other lead to the natural formation of aggregations, as 
demonstrated by various simulation experiments [17]. 

In those cases, when a finite state machine with three states [18] (namely, free movement, approach 
and wait) is used to control robots, the movement state lasts for a fixed period of time after which the 
robot analyzes the environment. If it finds other robots, then a transition to the approach state occurs, 
and the robot starts to move to the nearest found robot and then switches to the waiting mode. If in the 
process of analyzing, the robot does not detect other robots, it just switches to the waiting mode. From 
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the waiting mode the robot again can switch to the state of free movement with a predetermined 
probability. When using this algorithm, the whole dynamics of aggregation is determined by the 
probability with which the robot can detect other robots in the process of movement, considering that 
it is easier to detect larger aggregation clusters than individual robots. 

There is another algorithm based on finite state machine [19], where the aggregation behavior is 
achieved by using four states: search, wait, leave a group and change direction. The robot is looking 
for other robots and aggregates with them; then there is a transition to the waiting state in such a way 
that the robot tries to keep a fixed distance from each of its neighbors. It allows creating aggregation 
groups of almost round shape. As in the standard version of the probabilistic algorithm described 
earlier, in order to avoid situations where little aggregations inhibit the formation of large aggregates, 
robots can leave their group at any time with a predetermined probability. 

In [20], an approach is shown in which the aggregation is achieved in a simulated robotic system 
where each robot is equipped with an omnidirectional loudspeaker and a set of microphones. Robots 
use sound waves to determine their relative position. Basic states of finite state machine, implemented 
in this case, are approaching, waiting and repulsion. In the state of approach the robot moves in the 
direction of the loudest sound source, while in the state of repulsion robots move in opposite 
directions. When the robot detects another robot in the state of approach at close range, it switches to 
the waiting state in which it holds its current position. The robot switches to the state of repulsion with 
a predetermined probability, and then returns to the state of approach with another predetermined 
probability. 

In [21], Triani system may be of interest. The robots are provided with a source of light radiation, 
which can be used to alert the other robots. With the help of sensory perception (robots can detect the 
presence of other robots nearby and measure the intensity of the light emitted by another robot), each 
robot generates its own idea of the surrounding environment. At each time point, the robot randomly 
selects a behavioral pattern from pre-designed templates (including movement to and from other 
robots as well as switching on and off the light emitter). The probabilities of selection of different 
behavior models are determined on the basis of robot’s perception of the environment. Such genetic 
algorithm can be adapted to different collective tasks, if we define how exactly the robot will interpret 
the information received by the sensor, and determine the probabilities of activation of the basic 
behavior patterns on the basis of various environments. This approach allows us to perform the task of 
aggregation. 

In [22], the probability that the robot will leave its group is determined by robot’s orientation to 
other robots in the group. The robot facing the center of the aggregate is less likely to leave it than the 
robot oriented to other directions. Following the examples of various natural phenomena, such as 
molecular composition, the stability of aggregates is described by the energy of relations between the 
robots, which is a function of the relative position of robots. For simplicity, the authors have studied 
an aggregate consisting of two robots, where the energy of units equals the energy of relations 
between two robots. 

In [23], minimalist aggregation algorithms are used, in which the signal received at the sensor input 
is limited to one binary variable that determines whether there is another robot in sight. The study [24] 
discusses the algorithm according to which the robot is commanded to move back along a curved path 
if there is no robot in sight, or otherwise to turn on the spot. This simple mechanism allows achieving 
emergent aggregation in case robot’s sensors can work at a quite long distance. However, due to the 
lack of the behavioral pattern similar to the free movement, aggregation can not be guaranteed in case 
robots are initially at a greater distance from each other than the distance of sensor sensitivity. 

In [25], a neural network, the parameters of which are determined by the genetic algorithm, 
controls robots, equipped with microphones, sensors, wheels and a speaker. Two types of collective 
behavior were studied: static and dynamic aggregation. Both types of aggregates are shown in Figure 
3. 
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a b
 

Figure 3. A formed aggregate for different types of behavior of agents: (a) static aggregation; (b) 
dynamic aggregation 

 

The first type determines the formation of the static and compact aggregates, which, however, can 
not be scaled, as a large number of robots in one region tend to form multiple disjoint clusters. In the 
case of dynamic aggregation, formed units are less compact, but they continue to move through the 
area, and when there is a large number of robots in the area, different units tend to merge and form a 
single unit. Accordingly, dynamic aggregation has a greater scalability. 

4. Methods for estimating robot aggregation efficiency 
Metrics is usually based either on the determination of individual groups of robots, forming 
aggregates, or on the spatial distribution of robots in a certain area. The former case requires a formal 
definition of aggregates. Most often an aggregate is a group of robots such that for any pair of robots 
in the group, there is a chain connecting them and consisting of robots located at the maximum 
allowable distance from each other. The maximum allowable distance is usually chosen on the basis of 
robot’s parameters: working distance of communication modules and sensor sensitivity. In studies, 
where the robots are controlled by a finite state machine, the concept of aggregate can be defined as a 
group of robots, whose controllers are in the "waiting" state. 

Therefore, depending on the method for robot control, an aggregation efficiency index can be 
calculated as the ratio of the number of robots constituting the largest aggregate to the total number of 
robots [18], or as the average size of aggregates in the area [20]. A more thorough analysis of 
aggregation dynamics can be conducted by observing the distribution of the robots located in 
aggregates of different sizes. In tasks, where the objective is the aggregation of robots in a certain area, 
the standard metric is the percentage of robots that are in the target area or at a certain distance from 
the place of aggregation [20, 26]. Figure 4a shows robots, some of which formed an aggregate inside 
the circle, and this part accounts for 45%. 

The second type of metric involves determining the location of all robots in the area and their 
relative position. In [27], the sum of distances between each pair of robots is used to assess the 
aggregation (Figure 4b). In [23], the value of the average distance from robots to the center of mass of 
the swarm (Figure 4c) is used. In the study [24], the so-called "second moment of robots" was used, 
which is calculated as the sum of the squares of the distances from each robot to the center of mass. In 
[28], the so-called " bounding box ratio" was used, defined as the ratio of the surface of the smallest 
rectangle containing all the robots over the total surface of the arena (Figure 4d). 
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Figure 4. Graphic illustrations of different kinds of robot aggregation
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Figure 6. Evaluation of the number of collisions when the number of robots increases and at different 
density pmax of robots’ location on the surface 

6. Conclusion 
This article discusses the problems of aggregation of a robot swarm that are mainly related to the 
simplest computational and embedded propulsion devices as well as limited resources of a swarm of 
homogeneous robots. An overview of the main methods for solving the problem of aggregation (the 
method of virtual forces, probabilistic and evolutionary methods) has shown that the choice of the 
method, first of all, depends on the computational and network resources of robots. We have given 
examples of different aggregation algorithms as well as limitations on design solutions due to 
technical requirements for the implementation of these algorithms.  

To evaluate the effectiveness of robot aggregation, spatial and temporal assessments are mainly 
used. The choice of the metric depends on the parameters of aggregates, which should be achieved, as 
well as on the aggregation method that is technically possible to implement to control a given robot 
swarm. As a result of the analysis, it can be concluded that systems using neural networks to control a 
robot swarm are the most promising in terms of further improvement of aggregation algorithms. 
However, their implementation requires large computational onboard resources. The developed 
mathematical and software support for control and navigation of a swarm of autonomous 
homogeneous mobile robots has been tested in forming a given convex surface. Further research will 
be aimed at solving the problems of interaction of a swarm of robots in constructing more complex 
shapes taking into account a larger number of physical parameters. 
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