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Abstract. The paper presents principles of geometrical modeling and visualization of curved 
paths and surfaces specified by the scalar field. Objects of scientific visualization are described 
by means of single-valued functions: paths – by parametric time functions, surfaces – by 
explicitly recorded equations. Kernels of radial basis functions are placed in reference points of 
the scalar field. Polynomial radial basis functions with compact support are offered to visualize 
the paths. The paper describes a two-stage algorithm to construct a polygonal surface model. 
The first stage provides transition to new uniformly placed reference points. In the second 
stage, orthogonal basis functions are used for interpolation and transition to a polygonal mesh. 
Computational acceleration is achieved by means of the finite difference method. The 
effectiveness of the taken decisions is confirmed experimentally. 

1. Introduction 
Visualization of research, experiment, monitoring, design results requires various, often unique 
human-machine interfaces. The research results are easier to analyze if the interface is of the 
ergonomic, familiar to the human form. A human lives in a three-dimensional world, so a 3d-interface 
approximate to reality is the most convenient for him. At the same time, the interface implemented 
entirely on principles of virtual reality, is redundant both by the volume of provided information and 
by the needed computational costs. Constructing the interface, a combination of virtual reality 
elements with stylized elements – scales, mnemonic symbols, inscriptions, navigators, and symbolic 
forms – is rational. Then the space of the interface must include elements of different dimensions: 1d- 
(e.g., a scale column), 2d- (a mnemonic symbol), 2.5d- (a map of terrain), 3d- (man-made and natural 
static objects), 4d- (dynamics and morphing of objects). The most difficult task is the geometric 
modeling of spatial curves and curved shape surfaces. These interface elements should comply with 
the accuracy of modeling, ergonomic display and savings on computational costs. The paper deals 
with the principles of geometric modeling and visualization of curved paths and surfaces specified by 
the scalar field. The interpolation by radial and orthogonal basis functions is used. 

2. Visualization of curved paths  
The task of paths visualization arises when monitoring and researching dynamic objects. Display of 
the motion path with reference to a map or a plan of the surrounding area gives an idea of the current 
location of the object, enables to evaluate the real option to achieve a given point in space, and the 
optimality of the chosen path. The extrapolation of the path on the last points gives a short-term 
prediction of the object motion in real time. Knowledge of the object motion path enables to repeat its 
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way and analyze the stages of the path, if necessary. 
Object coordinates in the real world are determined by modern means of GPS-navigation rather 

accurately. Space interface is a model of the real world, whose geometrical relations are stored in the 
model when defining the scale of their coordinate systems. Objects location is fixed at certain 
intervals. Data can be collected in quite long periods, as the monitoring task cannot occupy all 
computing resources. As a result, a set of characteristic (reference) points of location is formed 
sequentially in time, whose sequence defines the path of the object motion. To visualize the path, it is 
required to solve the problem of interpolation in real time. 

Mathematical apparatus of radial basis functions (RBF) has good interpolation capabilities. When 
using it, an interpolant is traditionally represented in the general notation as F(x,y,z) = 0 (for example, 
[1]). This notation is inconvenient for visualization, as finding the path points is only possible using 
enumerative technique with regard to all points from the domain of the interpolant-function. If the 
function equals zero for the next point, it means that the point belongs to the path. The enumerative 
technique has a big computational burden and is time-consuming, which negatively affects the speed 
of the curve construction. 

Mathematical description of the path is single-valued time function t. It allows applying a 
parametric form to describe the path in three-dimensional space: ���� = ∑ ��	
	�� 
���	�,  ���� = ∑ ��	
	�� 
���	�,                                                        (1) ���� = ∑ ��	
	�� 
���	�,  ��	 = |� − �	|, 
where  ��	,	��	,	��	 – are influence coefficients of the i-th reference point at the current point of the 
path along the coordinate axes; 

       
���	�	–	is the RBF value of the i-th reference point at the current point of the path; 
        ��	 – is temporal distance between the current and the i-th reference points; 
        �	 – is time of appearance of the i-th reference point; 
        N – is the number of reference points on which the path is based. 

The N number depends on the requirements of the display task. ��	,	��	,	��	 coefficients  are 
determined from the condition of the accurate path passing through the reference points. To achieve it, 
three sets of N equations of the following form are worked out:  ∑ ��	
	�� 
����	� = ��,						� = 1. . !,  
where �� – is a spatial coordinate (c=x,y,z) of the j-th reference point; 
               ���	 – is temporal distance between the reference points with the numbers i and j, 
or in a matrix form: 
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". 
The solution of equations in the matrix form after obvious designation takes the form '( = ( · *+�                                                                   (2) 

and is computed by any known technique. ��	 substitution in expression (1) gives a description of the spatial path at the N reference points. To 
display it, t parameter varies from �� to �
 with some step ,-, depending on the desired smoothness of 
the path display. The intermediate points are connected by rectilinear segments by means of graphics 
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library. For the short-term prediction of the object motion, t parameter gets values ��
 + ,-�, ��
 +2,-�, …	. 
To reduce computational complexity, RBF with compact support and finite-difference 

computational algorithm should be used. Application of  RBF with compact support can reduce the 
number of reference points affecting the current point of the path, that is, it can reduce the number of 
summands in expressions (1). The finite-difference algorithm can calculate RBF values  using 
summation operations only. In [2], there can be found examples of several compactly supported RBF, 
where the argument is distance r between the current and the reference points, which is always 
positive. RBF can be offered in the form of a polynomial, whose argument is the time coordinate of 
the current point. In this case, the temporal distance between the current and the reference points can 
be both positive and negative. This is a biquadratic function 


���	� = 1�+�23 45 − 2 1�+�23 4# + 1,    6 = �
 − �� , 

whose graph is similar to a Gaussian. A power function is good because it can be computed by means 
of finite differences. 

Calculation of power time function 
���� is implemented by increments ∆-�89��: = ∆-8: + ∆-8� ,															∆-:: = 
����|��:, 
∆-�89��
� = ∆-8

� + ∆-8
# ,															∆-:

� = ∆-
�|��:,	 

. . .                                                                            (3) 

∆-�89��
;+� = ∆-8
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;,											∆-:
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∆-
;	= const	, 

where 	∆-
A  – is a finite difference of s order (s=0,1,2,…) on the t parameter, and ∆-

:= 
���; 
      ∆-:

A  – is the initial value of finite difference (t=0); 
      m – is a calculation step number. 
��	  calculation according to expression (2) must be performed each time when the next reference 

point appears. At great path length, ��		computation becomes resource-intensive, so N (N=const) 
should be limited and each time the path segment of the same length should be calculated. Initial 
segments should be entered in the memory of the display system and reproduced. Each next segment 
of the path, running after the memorized fragment, will be drawn a little differently than before when 
the new reference point appears.  

 

 

 

 

 
 

  
 
 
This is due to the fact that it will be constructed on the changed set of reference points. In this set (N-
1) reference points remain the same, and one new reference point is added to them. Then the rational 

                  a                                    b 

Figure 1. Type of the path segment constructed on 
5 (a) and 8 (b) reference points 

Figure 2. Motion path of the aircraft 
with prediction 

3

International Conference on Information Technologies in Business and Industry 2016                     IOP Publishing
IOP Conf. Series: Journal of Physics: Conf. Series 803 (2017) 012078         doi:10.1088/1742-6596/803/1/012078



choice of N allows us to minimize the deviation while drawing a path. Figure 1 shows two segments of 
the path, constructed on 5 (figure 1,a) and 8 (figure 1,b) reference points.  

The image is obtained by the postgraduate student Hoang Thai Ho. The same path segments in the 
figures are visually almost indistinguishable, which suggests the possibility of using a small number of 
reference points. Figure 2 shows practical application of the path, predicting the moving direction. 
This is an interface fragment that shows motion monitoring of aircrafts on the background of the 
landscape. The image of the object is supplemented by symbols of some of the flight characteristics. 
The author of the image is a postgraduate student, V. Vlasov. 

3. Visualization of curved surfaces 
When solving many tasks of scientific visualization, it is required to model objects with a curved 
surface. For example, the distribution of a physical quantity (precipitation, temperature, air pollution, 
etc.) on the territory of the geographical region is represented more clearly in the form of 3d-surface. 
Each point of this surface has three geometric coordinates. Two of them tie a point to the geographical 
coordinates, and the third (height) represents the value of the physical quantity on a certain scale. To 
increase the visualization of the scene it is subjected to geometric shift and rotation transformations, 
real-time projection. Another example is the characteristic coloring of the relief in accordance with the 
level of the physical quantity at its points. This relief may belong to a geographical region or an 
investigated product. In all cases, the values of a physical quantity or the relief points are set by a set 
of discrete values – a scalar field (scattered data). Sensors, 3d-scanners, manual samplings performed 
by experts, maps and plans provide these values. Interpolation methods are used for surface 
reconstruction by discrete values (reference points). 

As it has been already mentioned, RBF have good interpolation capabilities. As a rule, the 
distribution of the physical quantity and the terrain can be described by single-valued functions that 
allows using a clear form of the surface description. B��, �� = ∑ �	

	�� ��	�,                                                             (4) 

where r i – is a Cartesian distance between current point (x,y) and the i-th reference point ��	 , �	�, 
calculated on the plane of arguments: �	 = C�� − �	�# + �� − �	�#D� #⁄  ;                                                 (5) 

          k – is the third coordinate of the surface – the height of the relief or the value of a physical 
quantity. �	 influence coefficients of reference points (i=1,…,N) are evaluated from the condition of accurate 
passage of the surface through the reference points. This condition is written similarly to the condition 
for the path, and the expression calculating influence coefficients has a form (2) with the following 
designations: 

'( = "���#⋮�

" , ( = "B�B#⋮B


" , 					* = "
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�",			 
where ki (i=1,…,N) – is the value of the k coordinate in the i-th reference point; 
          rij  – is the distance between reference points with i and j numbers (i,j=1,…,N),  calculated on 
the plane of arguments x,y. 

To visualize the surface it appears as a polygonal mesh, displayed by the GPU of a computer. 
Reference points can be placed in the space rather rarely and irregularly. In this case, their usage as 
vertexes of the polygonal mesh provides a surface with explicit edges, which worsens the perception 
of the scene. It is necessary to use intermediate points of the surface as vertexes. To improve the 
surface smoothness the number of these points should be sufficiently large. Terms of vertexes location 
must be the following: they belong to the surface, their projection on the xy arguments plane is placed 
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uniformly, their calculation is not time-consuming for the computer. 
The calculations are carried out in two stages. The first stage is the transition from initial reference 

points to new reference points whose projection on the plane of the arguments is placed uniformly. 
The number of new reference points can be relatively small and comparable to the number of the 
initial reference points. Equation (4) is used to find new reference points. There can be applied any 
RBF, producing good results on a given type of surfaces. The arguments plane is passed with constant 
steps ∆�, ∆�	along the x, y coordinates, and the surface points are calculated according to equations (4), 
(5). Found points are taken as new reference points of the surface. 

At the second stage, vertexes of the polygonal mesh are calculated. To do this, surface interpolation 
is used by functions of an orthogonal basis (FOB). The transition from the radial basis functions  to the 
orthogonal basis functions is due to the fact that FOB allows finding the distance between the current 
and the i-th reference points of the surface separately along each coordinate axis (��	, ��	). In this case, 
a fast finite-difference algorithm can be applied for calculations. The description of the surface set by 
new reference points and FOB still has form (4), only the N number has a different value, and 
��	�  is 
replaced by 
���	, ��	�. It makes sense to use power functions of q order as FOB: 


���	, ��	� = 11 − 1FG2H 4I4 11 − 1FJ2H 4I4,	
where R – is the size of the influence domain of the reference point. 
It is calculated by means of finite differences for m summation operations [3] according to the 
equations similar to (3). The simplest option of FOB is bilinear function (q = 1). 

Figure 3 shows the application of this approach to the visualization of the precipitation distribution 
over the area of some geographic region. The represented surface segment is constructed on 34 
reference points. The image is obtained by a student D. Lapshina. 

 
 
 
 
 
 
 
 
 
 
 
 

 

4. Conclusion 
It is possible to compare RBF and FOB features in terms of accuracy and computation time. A 
polyharmonic spline of the first degree is a RBF that is the closest to the bilinear FOB. When using it, 
as in the case of FOB usage, distances between reference points and the current point can be calculated 
not in a three-dimensional space, but on the plane of arguments. In this case, distance �	  is determined 
by equation (5) and requires squaring and extraction of a square root. Both operations require a lot of 
computing time. At the same time, the value of the bilinear FOB is calculated by means of a difference 
formula in a single summation. This experiment shows that the interpolation error for both functions is 
commensurable. They were compared on the example of interpolation of Franke function [4]. An 
application of a polyharmonic spline for interpolation of the surface section on 30 uniformly placed 
reference points resulted in a standard deviation of about 3.8%. Interpolation by means of the bilinear 
FOB in the same conditions resulted in a standard deviation of about 4.5%. 

Figure 3. Visualization of the surface of the precipitation distribution 
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