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Abstract. We test in a simplified 5-dimensional model with SU(3) gauge symmetry, the
evolution equations of the gauge couplings of a model containing bulk fields, gauge fields and
one pair of fermions. In this model we assume that the fermion doublet and two singlet fields
are located at fixed points of the extra-dimension compactified on an S*/Z, orbifold. The gauge
coupling evolution is derived at one-loop in 5-dimensions, for the gauge group G = SU(3), and
used to test the impact on lower energy observables, in particular the Weinberg angle. The
gauge bosons and the Higgs field arise from the gauge bosons in 5 dimensions, as in a gauge-
Higgs model. The model is used as a testing ground as it is not a complete and realistic model
for electroweak interactions.

1. Introduction

A gauge theory defined in more than four dimensions has many attractive features, where
interactions at low energies may be truely unified and some of the distinct fields in four
dimensions can be integrated as a single multiplet in higher dimensions, like in gauge-Higgs
models, where the Higgs fields can be a component of 5-dimensional gauge fields. Note also
that the topology and structure of the extra-dimensional space provides new ways of breaking
symmetries [1]. The simplest theories of this type have problems in reproducing low energy
observables, such as the Weinberg angle, the SM fermion content and where Yukawa couplings
are different from the gauge couplings [2].

In this paper we shall discuss the gauge coupling evolution for a model which contains a
pair of left-handed and right-handed fermion matter fields located at different fixed points. Our
model shall contain a heavy bulk fermion, which has quantum numbers allowing couplings to
both the boundary fermions. This matter field is introduced as a representation of the unified
group G = SU(3), where this gauge group is broken to a subgroup H. This unified SU(3) group
is the gauge symmetry of the electroweak interaction and a Higgs doublet field, and it is not the
gauge group of the strong interaction [3].

Note that H (the subgroup of G) is not broken by the vacuum expectation value (vev) of the
scalar fields (under which the vev of the scalar fields is invariant). So we can correspondingly
divide the generators of GG into two sets: the unbroken ones, that annihilate the vacuum, and the
broken ones, the orthogonal set [4]. According to the Goldstone theorem each broken generator
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in the coset G/H is associated to an independent massless scalar (Goldstone bosons), carrying
the same quantum numbers as the generators [5]:

SU(3)

e ORI

= dim(G/H) =8 — (3+1) = 4. 1)

In the case of the bulk fields, the standard Yukawa coupling can originate only from higher-
dimensional gauge couplings, but in the case of the boundary localised matter fields the
standard Yukawa coupling cannot be directly introduced [6]. The gauge bosons arise from
the 4-dimensional components of the 5-dimensional gauge fields, whilst the Higgs field arises
from the internal components of the gauge group G' = SU(3) compactified on an S!/Z5 orbifold;
and it can be described as a circle of radius R where the opposite points can be identified by the
action of the Zy orbifold [7]. This orbifold is given as Zs : y — —y, so our physical space is the
interval y € [0, 7R] and it has two fixed points at y = 0 and y = 7R. The generic 5-dimensional
bulk fields, for example A, (z*,y), have the following transformation property:

Ap(ah, —y) = PAL (", y). (2)

It also has a U(1) transformation, under the boundary condition of the fifth coordinate
y—y+rR[8:
A, (at,y+7mR) — PA, (2", y). (3)

The As(z#,y) gauge field has the following transformation property:
As(2t,y) — PAs(2t,y)P~! —iP~'9,P, (4)
where our Z5 orbifold boundary condition is given in the following way:
P 0T (5)

Here we are considering that the gauge transformation 9 is linear in y.
Taking our gauge field to be along the third isospin direction, which means that the Z,
orbifold boundary condition can then be written in the following way:

' -1 0 0
P=¢™s=| 0 -1 0 |, (6)
0 0 1

where )\, are the standard SU(3) Gell-Mann matrices, normalised as Tr(AgAp) = 2045. The
group Zo acts on the tours as 7 rotations, the orbifold projection P breaking the gauge group
G in 4-dimensions to the subgroup H = SU(2) x U(1) of the projection P. The massless 4-
dimensional fields are the gauge bosons Aj in the adjoint of H and the charged scalar doublet
arises from the internal components Ag of the gauge field [9].

The brane fields of the model we shall focus on consist of a left-handed fermion doublet
Q1 = (ur,dr), and two right-handed fermion singlets ur and dr. We are going to assume that
the doublet and the two singlet fields are located respectively at positions y; and yo, which equals
to either 0 or 7R. In this model we are neglecting the bulk to boundary couplings, because we
are trying to control the Yukawa coupling terms, which are present in the model. We are also
trying to simplify the model.
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The Lagrangian for the bulk fields, gauge fields and the pair of fermions is given by:

Ematter = Z [i&a(x7 y)pf)wa(l', y) + iqza($7 y)p51;a(ff, y) + 1/_}04('@7 y)Ma&a(‘fE? y)

a

+1Za($7 y)Mapa(z,y)

+6(y —y1) [iQL(l‘a Y)PuQr(x, y)]

+5(Z/ - y2) [iJR(x7 y)pudR(xa y) + ZﬂR(w: y)puuR(xv y)] ) (7)

where ), and Ps are the 4-dimensional and 5-dimensional covariant derivatives respectively,
and are related by the following equality

Ds = Dy +ivsDs. (8)

Du = vMon — iv™ g AT, (9)
where M = ( p or 5), the Hermitian matrix v5 = iv,, T are the generators of the Lie algebra of
the gauge group G, Aj are the 4-dimensional gauge bosons and the scalar fields A§ are identified
with the components of the Higgs field [10].

In the fundamental representation of the gauge group G, the mode expansion for the left-
handed %7, and the right-handed g bulk fermion is

Yar(y Znn n(’;}’> @), (10)

waR Znn (T}?) aR( ) (11)

By adding equations (10) and (11) one can get the corresponding Fourier decomposition of a

generic bulk fermion
sin ( )m( ) + cos (”;”) wsR@:)] 7 (12)

where the factor 7, is defined to be 1 for n = 0 and 1/v/2 for n # 0, which means we can rewrite

the bulk fermion in equation (12) as
1 o) +cos (T Juipo)|. (13)
V2T R R )Vert

The 4-dimensional Lagrangian for the bulk fermion v, is written as

Znn

n=—oo

%(y) = w

2\/@2

TR
‘CZ};) = /0 [wa(y)ideja(y)] dy, (14)
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where integrating out the y coordinate one can get

1

Ly B DR (@) (Y 0u — u0s) o g () + ivug5 T Do p(x) ALY R ()

—iy" g T Yo R(x )A%b <Z bar (@) (0 — 1u05) g, (x)

+ivugsT* Z%L JAZYar (%) — WHQMTQZJJZLL(@AZ%LL@)

n=1 n=1

+ Y i) (7 0y — 1u05)ViR(w) + inugs T Y Pip() AGUiR ()
n=1

n=1
—i'g Ty @ZR(x)AWZR(w))] : (15)
n=1

We can obtain the 4-dimensional Lagrangian for the bulk fermion, z/;a, in similar way as in the
case of the bulk fermion, v,, by replacing v, by 1, in equation (15).

Now let us move to the case of the 4-dimensional left-handed fermion doublet, where the
Fourier decomposition for that field is written as

mQL 2\/@ Z cos ( ) 7(z) + sin <T§/> Q%(m)] . (16)

The 4-dimensional Lagrangian for the left-handed fermion doublet is given by

QL(y) =

TR
Lo =/0 dyd(y — y1)

QLiEyQL] ; (17)

where as we mentioned before, the d(y — y1) is needed as the left-handed fermion doublet is
located at position y;, which is equal to either 0 or 7 R. By integrating out the y coordinate one
can get

_ 1
Ly o QY (@) [0y + "9 ALT QY (x 52 2)[iv" O + " 9u AL T QY (2 )]

(18)

Finally, we can see the case of the two singlet fields which are located at position ys, the
Fourier decomposition for those fields are written as

dr(y) = \/21717Rd0 Z Ccos <Tg> () + sin (T;:;/) %(m)], (19)
1

B 1 > [ ny\ , . ny\ ,
ur(y) = QWRUOR(x) + 2\/@7;1 _cos (R) u'p(x) + sin <R>uL(:U)] . (20)

The 4-dimensional Lagrangian for the two singlet fields dr and ug is written as

Lot — /0 dyd(y — y2) [dRiEudR + ﬂRiJD#UR] : (21)
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where by integrating out the y coordinate one can get

Lype 7R d () [iv" 0 + 7 gu AL T dR () + U () [iv" O + ¥ gu AL T Jup(x)
T () [ O, + 7 9, AL T | d (w Z 2)[i7" 0 + 7" gu AT luf(z) |
1 =1

DN | =
Mg

+

n

(22)

2. The gauge coupling evolution equations

Our goal is to discuss the gauge coupling evolution for the model presented in the previous
section. In order to do so, we need to introduced the g-functions. This crucial object is needed
to determine the evolution of the coupling constants. In general, in a theory with n-couplings
gi, we have to solve a set of coupled differential equations of the form

%_dgz‘

P = — T 23
B Wan = dt (23)

where ¢ = (In[u/Mz]). In general the S-functions depend on all the couplings and masses of the
theory. We can get rid of the masses by focusing only on the universal UV relevant coefficients.
For example, one can focus on the gauge coupling evolution equations, where we can write the
general term for the gauge interaction of the fermions and the gauge bosons as g@Z_w’%/JA”. In
terms of renormalisable quantities (by rescaling)

b= 2z/"", (24)
v =2,/"", (25)
Ay =Z2A%, (26)

where Z;/ 2, Z115/ % and Zil/ are the renormalisation constants.

By using equations (24), (25) and (26) one can write the gauge interaction of the fermions and
the gauge bosons in terms of the renormalisable quantities [11]

1/2 1/2 1/2¢R W)RAR 21/2 RwR M¢RAR (27)
From the above equation one can see that

92;7/2Z11/22i1{? _ Z;/QgR. (28)

As we discussed earlier, the couplings g; are determined by noticing that physics cannot depend
on our arbitrary choice of scale . We have, therefore,

ding® 1dinZg, L ldnZy, 1dnZs, 1dinz,
a2 dt 2 dt 2 dt 2 dt

(29)

We then need to calculate the renormalisation constants. When doing so, we usually ignore the
mass terms in the propagators, since they have nothing to do with the divergent part of the
one-loop diagrams. We are going to focus on the UV regime where we can neglect the m/u
dependence of 5 [11].
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The general formula of the S-functions for the gauge couplings is given by [12]
dg; ~
16728 = Mg + (b + S(0)b)g?, (30)

where ¢t = In(S(¢t)/MzR), S(t) = puR for Mz < p < In(1/MzR). The numerical coefficients
appearing in equation (30) are given by:

41 19
M= | = - 7 31
! [10’ 6’ ’ (31)
are the SM S-functions coefficients.
10 51 20 3
b; = o 120 ool 32
‘ [ 3’ 16" 3 8] (82)
are the 0-mode S-functions coeflicients.
~ 45 15 5
bj=|— —,——,0].
! !167r’ 167’ W’OI (33)
are the n-mode S-functions coefficients.
3. Result and discussion
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Figure 1. Left panel: Evolution of the gauge couplings g; (red), g2 (blue) and g3 (green), for
three values of the R~! = 1 TeV (solid line), 5 TeV (dot-dashed line), 20 TeV (dashed line) as
a function of ¢. Right panel: Evolution of the Weinberg angle sin? fy with the bulk fermions,
with the doublet located at position y; and two singlets located at position 3o, for R~ = 1 TeV
(red), R~! =5 TeV (blue) and R~! = 20 TeV (green) as a function of .

We have chosen the cut-off for our effective theory, these cut-offs are where g2 = g3, as shown
in Table 1. In Figure 1, left panel, we present the evolution of the gauge couplings for the
one-loop S-functions, by assuming that the bulk fermion is the top quark. We see that the three
gauge couplings unify at some value of . In the right panel we present the evolution of the
Weinberg angle for the one-loop S-functions, for different values of compactification scales, for
the model discussed in the previous section. When the fifth dimension contributions switch on
there are large changes in the Weinberg angle up until we reach the cut-off. We can conclude
that with this model the estimate of the Weinberg angle is closer to the group theoretically
predicted Weinberg angle.
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Scenario t R 1 sin?fy
5D SU(3) gauge group 6.59  1TeV 0.335
5D SU(3) gauge group 8.14  5TeV 0.345
5D SU(3) gauge group 9.47 20TeV 0.348

Table 1. The cut-off and Weinberg angle for the model presented in the previous sections for
the three different compactification radii R~! = 1, 5 and 20 TeV, where t = In(u/My).
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