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Abstract. In this paper we experimented with several feature sets for detecting spam
comments in social media contents authored by Indonesian public figures. We define spam
comments as comments which have promotional purposes (e.g. referring other users to products
and services) and thus not related to the content to which the comments are posted. Three sets
of features are evaluated for detecting spams: (1) hand-engineered features such as comment
length, number of capital letters, and number of emojis, (2) keyword features such as whether
the comment contains advertising words or product-related words, and (3) text features, namely,
bag-of-words, TF-IDF, and fastText embeddings, each combined with latent semantic analysis.
With 24,000 manually-annotated comments scraped from Instagram posts authored by more
than 100 Indonesian public figures, we compared the performance of these feature sets and their
combinations using 3 popular classification algorithms: Naive Bayes, SVM, and XGBoost. We
find that using all three feature sets (with fastText embedding for the text features) gave the
best Fi-score of 0.9601 on a holdout dataset. More interestingly, fastText embedding combined
with hand-engineered features (i.e. without keyword features) yield similar Fi-score of 0.9523,
and McNemar’s test failed to reject the hypothesis that the two results are not significantly
different. This result is important as keyword features are largely dependent on the dataset
and may not be as generalisable as the other feature sets when applied to new data. For future
work, we hope to collect bigger and more diverse dataset of Indonesian spam comments, improve
our model’s performance and generalisability, and publish a programming package for others to
reliably detect spam comments.

1. Introduction

As reported in [1], Instagram has 22 million monthly active users in Indonesia from 500 million
users worldwide. With 95 million photos and videos posted every day, Instagram has obviously
become a prominent photo and video sharing platform in the world. However, just like e-mails,
the high number of activities mean that there is a chance that people could get more attention
even when they post totally irrelevant comments which we also know as spam.

Indonesia, in particular, has this problem where some users put advertising on public figures’
posts as comments. This problem has gone too far to the fact that the first 50 comments on a
public figure’s post could be all spam'. Like e-mail spam, we believe that these comments can
be very annoying and should be automatically filtered.

To the best of our knowledge, we have not seen any investigation on Instagram’s spam on
Indonesian accounts before. The case might be platform specific, but the insight from this study
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could hopefully be used to similar cases, e.g. spam comments on blogs or e-mail spam. This is
because the machine learning algorithms we used in our study which have been proven to work
well in general. Our focus is less on finding the algorithm that works best on our dataset and
more on identifying the salient features to detect spam comments.

2. Related Work
While we might be able to detect spam to some extent by using origin-based filters (e.g. using
IP or email address), in the case of spam email, content-based filtering is more common to do
[3]. The same thing also applies to spam comments, as people can easily create new accounts for
this spamming purpose. However, content-based filtering also comes with some problems. For
instance, spammers could obfuscate their message (e.g. by writing “f r 3 3” instead of “free”)
to trick the filter [2].

Machine learning approach, which can automatically filter the spam by building adaptive
model, has become more popular nowadays. Before sending the features to be learned by the
algorithms, according to [2], the structure of a spam filter can be grouped into:

i) tokenization, which extracts the words in the message body;
9 g y’
) lemmatization, reducing words to their root forms;
(iii) stop-word removal, eliminating some words that often occur in many messages;
)

representation, which converts the set of words present in the message to a specific format
required by the machine learning algorithm used.

Nevertheless, as it was also pointed out in the study, not all of the steps are mandatory.

As the name might suggest, words are the features in content-based spam filtering. The
problem now is how to represent them properly for the algorithms. Some of the representation
that has been used in content-based spam filtering are bag-of-words (BoW) [5], term frequency-
inverse document frequency (TF-IDF) [6], and binary representation of word occurences [4]. In
[4], it was also considered to use of upper case words as one of the features.

Since using BoW and TF-IDF can result in a sparse matrix, we can reduce the dimension by
using Latent Semantic Analysis (LSA). As explained in [9], this method applies Singular Value
Decomposition (SVD) to the matrix so that we can learn “expected contextual usage of words
in passages of discourse.” LSA also helps us to make the learning process faster.

In more recent work [7], we can see the improved version of skip-gram model [8], “where each
word is represented as a bag-of-character n-grams.” This method enriches the word vectors with
subword information on rare words. It also has the advantage of not needing any preprocessing
of the data.

3. Methodology
3.1. Features
We used several techniques for representing the comments as follows:
(i) Binary Bag-of-Words with LSA;
(ii) TF-IDF with LSA;
(iii) Word2Vec using skip-gram model.
The first two representations were made using the library provided in scikit-learn? [10]. We set

the minimum document frequency (min_df parameter) to be 5. We then reduced the dimension
of BoW and TF-IDF representations to 100 using LSA. The chosen dimension is the same as

2 http://scikit-learn.org/stable/
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the default output dimension in the Word2Vec library we used in this study, i.e. fastText? [7].
We did not apply any lemmatization or stop-word removal in our study.

The word vectors produced by Word2Vec are 100-dimension vectors for each word in the
document. We then took the average of all word vectors that constitutes each document,
yielding 100-dimension document vectors. These vectors can then be used as the features in
our experiment.

These features alongside some numerical features that can be easily extracted from the text,
e.g. number of tokens, number of upper case words, number of numerical characters, percentage
of emoji, and the length of the text (see Table 1), were then passed onto a number of machine
learning algorithms. We call these as basic features in our experiemnt. We also utilised some
hand-engineered keyword patterns in our experiment (see Table 2), which later on in this paper
are known as keywords features.

Table 1. List of basic features

Name Description

n_token Number of tokens

n_capital Number of upper case words

n_emoji Number of emojis

n_unique_emoji Number of unique emojis

n_number Number of numerical characters

n_mention Number of mentions

%_capital Percentage of upper case words

%_number Percentage of numerical characters

h-emoji Percentage of emojis

%-unique_emoji Percentage of unique emojis

log char log(numberofcharacters)

has_phone number Contains phone number

has bbm pin Contains BlackBerry® Messenger
PIN

3.2. Algorithms

In this study, we used Naive Bayes (NB), Support Vector Machine (SVM) with RBF kernel,
and XGBoost as the algorithms to classify the data. We based our selection of algorithms on a
generic review of machine learning algorithms performance in [11] where SVM with RBF kernel
and Random Forest turned out to be performing quite well in many cases. XGBoost [12] as a
variation of decision trees method that shares some similarities with Random Forest, such as in
the column sampling method and ensemble trees concept, became our choice of implementation
because it has been proven to be successful in many machine learning competitions. On the
other hand, we also incorporated the results from Naive Bayes algorithm as the baseline for our
study because of its simplicity and efficacy in practice [13].

We held out 20% of the dataset to be used as the test set later on in our study. We evaluated
our models using cross-validation and concurrently tuned the hyperparameters. Using consistent
random number generator, the hyperparameters we tested in our study can be seen in Table 3.
The best models were then tested on the test set to know how well our model performs in
general.

3 https://github.com/facebookresearch/fastText
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Table 2. Hand-engineered keyword patterns

Regular Expression

bbm|pin bbl|line|whatsapp
(ch?ec?k|intip|liat|kepoin) ( out)?( (ourlmy))? (iglinstalkoleksi|profil)
cekidot
dada|herbal|langsing|payudaral|pemutih|penggemuk|peninggi|tahan lama|tinggi badan
efek samping
follow
free (deliveryl|ongkos|ongkir|pengiriman) |gratis|murah|promo|terjangkau
garansi|kualitas
impor
invit
jerawat
juallsell
langganan
luar biasa
mampir
nyaranin
order
password
penghasilan
produk
s(olulou)venir
stock|stok
yu+tk

Table 3. List of hyperparameters

Classifier Hyperparameters Values tested
Naive Bayes fit prior [True, False]
SVM C [275, 273,20 23 25 27 29]
gamma [279, 277, 275 273 20 23 925 27 29
XGBoost n_estimators [10, 20, 50, 100]
subsample [0.5, 0.6, 0.7, 0.8, 0.9, 1.]
colsample bytree [0.5, 0.6, 0.7, 0.8, 0.9, 1.]
reg_alpha [0., 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1., 5., 10.]
reg_lambda [0., 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1., 5., 10.]
scale pos_weight [l., 2.28, 3.55, 4.83, 6.11, 7.38, 8.66, 9.94, 11.22, 12.49]

3.3. Fvaluation Metrics
Since the distribution of the classes in the dataset is imbalanced, we used precision, recall, and
Fi-score to evaluate our models. These metrics are formulated as:

TP

precision = TP FP (1)
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TP
Nl=—" 2
reca TP LN (2)

Fl—2. prec.isiion -recall (3)
precision + recall

where TP, TN, FP, FN denote true positives, true negatives, false positives, and false negatives
respectively.

In this study, we focused on getting the highest F}-score. Therefore, most of the comparison
would be based on Fj-score. We only provide the precision and recall for the best model achieved.

4. Experiments

4.1. Dataset

We collected 24,602 comments from 500 posts authored by 104 Indonesian public figures. We
annotated those comments ourselves by looking at the original post to see the relevance of the
comments. We focused on comments that are promoting websites or products to be categorised
as spam. Eventually, we got 22,743 ham and 1,859 spam in the dataset.

4.2. Results

Our preliminary result from using only basic features as mentioned in Table 1 was promising.
We got 0.7775 of Fi-score using XGBoost. We can see in Figure 1 that the logarithmic value of
number of characters by itself can be a discerning feature.
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Figure 1. Difference in length on spam vs ham

We achieved an even better result using the features from hand-engineered keyword patterns
(see Table 4). However, as the keywords can be altered in the future by the spammers to trick
the classifiers, we cannot rely solely on this result. Thus, we continued our experiments with
the representations mentioned in subsection 3.1.

By using only word vectors extracted from the text, we can see in Table 5 that the algorithms,
with the exception of Naive Bayes, managed to beat the corresponding algorithms with our hand-
engineered keywords. Using word vectors from fastText resulted in the best models from three
representations.

Our next effort was combining the features in Table 1 with the word vectors. We wanted to
see how adding the basic features and our hand-engineered keyword patterns could improve the
models. The result for this experiment can be seen in Table 6. Note that “+b” means we were
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Table 4. Fj-scores of preliminary results

Classifier Basic Keywords Basic + Keywords

Naive Bayes 0.6667 0.8391 0.8772
SVM 0.7688 0.8726 0.9093
XGBoost  0.7775 0.8655 0.9089

Table 5. Fj-scores on word vectors
Classifier BoW  TF-IDF fastText

Naive Bayes 0.5361  0.2385 0.8249
SVM 0.9074  0.9074 0.9398
XGBoost  0.9121  0.9089 0.9248

adding basic features, while “+k” means we were adding keyword patterns features when we
trained the models.

Table 6. Fj-scores on combined features

Classifier BoW+b BoW+b+k TF-IDF+b TF-IDF+b+k fastText+b fastText+b+k

Naive Bayes  0.5802 0.7366 0.7331 0.8818 0.8621 0.8801
SVM 0.9399 0.9309 0.9373 0.9349 0.9523 0.9601
XGBoost 0.9268 0.9381 0.9377 0.9436 0.9512 0.9512

We can see that adding our proposed basic features improved all the Fj-scores. However,
adding keyword patterns to word vectors with basic features did not improve the performance
significantly. We confirmed this by using McNemar’s test defined as follows:

o2
X2:(bb+c) )

where b and ¢ denote the number of difference in class predictions (test 1 negative and test 2
positive, and vice-versa).

The p-value we got from McNemar’s test on SVM classifiers is 0.22, which means the
difference is not statistically significant (p > 0.05). This result indicated that using word vector
representation with semantic analysis is sufficient to detect important features from the text.
Having said that, the best Fj-score in our experiment was from adding basic and keyword
patterns features to SVM with fastText: 0.9601.

5. Conclusions and Future Work
Our experiments show that employing fastText can produce robuster models. This technique
can also minimise the time it takes for the feature extraction step. However, there is still a
possibility to improve the document vectors by taking the maximum or signed maximum values
for each dimension of the word vector instead of averaging them out.

This study also corroborates the thorough investigation in [11] where it is stated that SVM-
RBF and Random Forest performs quite well on many cases. These algorithms combined with
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fastText and our proposed basic features and keyword patterns turned out to be the best models
to identify spam comments. In our experiment, SVM and XGBoost got the best Fj-scores of
0.9601 and 0.9512 respectively.
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