

Combination of Huffman Coding Compression Algorithm and
Least Significant Bit Method for Image Hiding

D Rachmawati1*, A Amalia1, and J Surya1
1Department of Computer Science, Faculty of Computer Science and Information
Technology, University of Sumatera Utara, Jl. Universitas No. 9-A, Medan 20155,
Indonesia.

*Email: dian.rachmawati@usu.ac.id, amalia@usu.ac.id, johansurya20871@gmail.com

Abstract. Least Significant Bit method can be used to hide image data into another
image, but it need 8 bytes of data to store 1 bit of data, therefore, to store an image
with red, green and blue channel. It would require 24 times the size of the image itself.
To solve the size problem in hiding data, we implement and experiment with Huffman
Coding compression algorithm to reduce the size of the image data needed in C#. Our
experimental results are as follows. First, the less colour value variation, Huffman
Coding algorithm will give a better compressed size. Second, the average file size
change in this research is 29.17%.

1. Introduction
Steganography is one of the most powerful techniques to conceal the existence of hidden secret data
inside a cover object [1]. Least Significant Bit steganography is one such technique in which least
significant bit of pixels of the image is replaced with data bits. This approach has the advantage that it
is simplest one to understand, easy to implement and results in stego-images that contain embedded
data as hidden [2]. Images created from pixels i.e. If any pixel created by using these three colors red,
green and blue are called as RGB. Each color of a pixel is one byte information that shows the density
of that color. So if only last layer of information is used, then the last bits of the pixels has to be
changed, in other hands we have 3 bits in each pixel so we have 3*height*width bits memory to write
our information [5].

Compression refers to reducing the quantity of data used to represent a file, image or video content
without excessively reducing the quality of the original data. It also reduces the number of bits
required to store and/or transmit digital media [3]. Image compression can be bifurcated as lossy and
lossless compression. Lossy compression as the name implies results in loss of some information. The
compressed image is similar to the original uncompressed image but not identical to the previous as in
the process of compression some information regarding the image has been lost. They are generally
suited for photographs. The most common example of lossy compression is JPEG. Lossless
compression compresses the image by encoding all the information from the original file, so when the
image is decompressed, it will be exactly identical to the original image. Examples of lossless image
compression are PNG and GIF. (GIF only allows 8-bit images). When to use a certain image
compression format really depends on what is being compressed [6]. The purpose for image

1

International Conference on Computing and Applied Informatics 2016 IOP Publishing
IOP Conf. Series: Journal of Physics: Conf. Series 801 (2017) 012059 doi:10.1088/1742-6596/801/1/012059

International Conference on Recent Trends in Physics 2016 (ICRTP2016) IOP Publishing
Journal of Physics: Conference Series 755 (2016) 011001 doi:10.1088/1742-6596/755/1/011001

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

compression is to reduce the amount of data required for representing sampled digital images and
therefore reduce the cost for storage and transmission [4].

Huffman coding is a loseless data compression technique. Huffman coding is based on the
frequency of occurrence of a data item i.e. pixel in images. The technique is to use a lower number of
bits to encode the data in to binary codes that occurs more frequently [3].

2. Method
The experiments are conducted on the Windows 7 Notebook which has Intel Core i3 processor with
32-bit architecture and 2048MB RAM. The development environment being used for coding C#
scripts is SharpDevelop.

The image hiding process began with the secret image being compressed before insert into cover
image. The compression process will create the Huffman Tree at first.
Steps for creating Huffman Tree:

1. Get all the frequency of all color value from the secret image.
2. Select the two lowest frequency color value from it and treat it as the first node of Huffman

Tree.
3. Create parent node from those two nodes and count the sum of their frequency.
4. Remove those two nodes and replace with the parent node. It will be used to create the tree.
5. Do the steps above continuously until there is only one node left.
6. Every node that place at left branch will be given 0 value and the right branch will be given 1

value.
7. Read from the root of the tree to all nodes by checking their branch.

The Huffman Code is created from the Huffman Tree and will be use to encode all the secret image
data. This compression result will be divided into 3 parts. The first part is the bits that contain
information about the image size, the Huffman Code bit length variation which will be used to read the
code length and its frequency that will be used to read the Huffman Code table in the second part. The
second part is the bits that contain the pixel value and its Huffman Code. This part will be used to
decode all the compressed data in the third part. The third part is the bits that contain all the image
pixels value that have been encoded with Huffman Code. Those merged part will be insert into cover
image by using Least Significant Bit method to produce stego-image. Because the Least Significant
Bit method only replace the last bit, then the steps to this method is as follow:

1. If the bit value that need to store is 1 and the color value modulo 2 is 0, then increase the color
value by 1

2. If the bit value that need to store is 0 and the color value modulo 2 is 1, then decrease the color
value by 1

3. If the bit value that need to store is same with the color value modulo 2, then skip to the next
bit that need to store.

The image recovery process began with the stego-image being extracted bit by bit by using Least
Significant Bit method. In each extraction process, the system will check the extracted bits for
decompression. If one of the decompression process failed, then the whole recovery process will be
failed. If the decompression process has produced an image, the recovery process will be success and
sending the decompressed image as the result.

3. Results and Discussions
The results of the experiments of each set are presented in Table 1 and Table 2 as follows.

2

International Conference on Computing and Applied Informatics 2016 IOP Publishing
IOP Conf. Series: Journal of Physics: Conf. Series 801 (2017) 012059 doi:10.1088/1742-6596/801/1/012059

Table 1. The Compression result for 5 sample images.
Image Color

Value
Variation
(0-255)

Original
(Bit)

Compressed
(Bit)

Compressed
Ratio (%)

Compression
Time (ms)

All Black.bmp 1 2400 365 15.21 1

BlackWhite.bmp 2 2400 374 15.58 1

BlackWhiteGray.bmp 3 2400 503 20.96 1

_sicon.bmp 195 24576 17878 72.75 3

woman.bmp 199 98304 28826 29.32 9

In Table 1, it can be seen that the average compressed ratio is 30.76% and the average compression
time is 3ms.

Table 2. File size changes for 10 sample images.

Image File Size File Size (After
inserted)

Change (%)

All Black.bmp 376 bytes 454 bytes 20.74

BlackWhite.bmp 376 bytes 454 bytes 20.74

BlackWhiteGray.bmp 376 bytes 454 bytes 20.74

fivepointstar.bmp 3.05 KB 4.05 KB 32.79

Airplane.bmp 6.80 KB 8.86 KB 30.29

woman.bmp 12.0 KB 16 KB 33.33

_sicon.bmp 3.05 KB 4.05 KB 32.79

brick.bmp 175 KB 234 KB 33.71

Core2Quad.bmp 670 KB 893 KB 33.28

Intel-X38.bmp 597 KB 796 KB 33.33

In Table 2, it can be seen that the average file size change is 29.17%. The file size change showed in
Figure 1.

3

International Conference on Computing and Applied Informatics 2016 IOP Publishing
IOP Conf. Series: Journal of Physics: Conf. Series 801 (2017) 012059 doi:10.1088/1742-6596/801/1/012059

4

International Conference on Computing and Applied Informatics 2016 IOP Publishing
IOP Conf. Series: Journal of Physics: Conf. Series 801 (2017) 012059 doi:10.1088/1742-6596/801/1/012059

Figure 1. File Size Change

4. Conclusions

The conclusion in this research are as follows. First, the less the color value variation, Huffman

Coding algorithm will give a better compressed size. Second, the average file size change in this

research is 29.17%.

Acknowledgments

The authors gratefully acknowledge that the present research is supported by Lembaga

Penelitian Universitas Sumatera Utara.

References

[1]! Champakamala B S, Padmini K and Radhika D K Least Significant Bit algorithm for image

steganography International Journal of Advance Computer Technology (IJACT) 3 (4) 34-38

[2]!Verma V, Poonam and Chawla R 2014 An Enhanced Least Significant Bit Steganography Method

Using Midpoint Circle Approach International Conference on Communication and Signal

Processing 105 -108

[3]! Sharma M 2010 Compression Using Huffman Coding IJCSNS International Journal of Computer

Science and Network Security 10 (5) 133 – 141

[4]! Pujar J H and Kadlaskar L M 2010 A New Lossless method of Image Compression and

Decompression Using Huffman Coding Techniques Journal of Theoretical and Applied

Information Technology 18-22

[5]! Patel K, Utareja S, Gupta H 2013 Information Hiding Using Least Significant Bit Steganography

and Blowfish Algorithm International Journal of Computer Applications 63 (13) 24 – 28

[6]!Mathur MK, Loonker S, Saxena D 2012 Lossless Huffman Coding Technique For Image

Compression And Reconstruction Using Binary Trees International Journal of Computer

Technology and Applications 3 (1) 76 – 79

"

#

$"

$#

%"

%#

&"

&#

'"

&()!*+,-. &/"#!01)/2"!01 $%!01 $(#!01 #3(!01)("!01

4
56
-
!7
89
-
!:
;
<
=
>
-
!?
@
A

486-!789-

