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Abstract. At the previous ICPPA (2015) we presented the report [1] where we discussed
the results of the solution of the problem of estimation of statistical reliability of linear point
structures, obtained from the experiments at the FOBOS spectrometer [2] dedicated to study
of the spontaneous fission of the 252Cf nucleus in the mass correlation distribution of fission
fragments. These new unusual structures bounded by magic clusters were interpreted as a
manifestation of a new exotic decay called collinear cluster tri-partition (CCT) [3]. The
reliability of these structures was estimated on the basis of methods of morphological image
analysis [1], [4], [5]. To improve the quality of revealing and further estimation of linear
structures statistical reliability in the mass correlation distribution of fission fragments we used
the formalism of oblique projecting [6] and subjective modeling [7], [8].

1. Introduction
The mathematical methods and models for the morphological image analysis considered in this
paper are developed as applied to the analysis of actual scenes as based on their images obtained
under uncontrollable recording conditions, such as illumination conditions, spectral distribution,
the characteristics of recording instruments, the optical characteristics of scenes, etc. [1], [4], [5].
Methods and models for the morphological image analysis are usually computer-based and(or)
mathematical interpretations of subjective analysis results obtained by a so-called researcher-
modeler (r-m) concerning the goal of researchment and methods of it realisation (mathematical,
computational etc.) In this paper we discuss the mathematical formalism for subjective modeling
which can be used by a r-m to describe both formalized and non-formalized incomplete uncertain
data in various situations from “absolute ignorance” to “complete knowledge” of the model of
the research object. These data are based on a r-m’s scientific experience and intuition [7]. Also
we discuss the subjective modeling for the morphological image analysis, oblique projecting
methods [6] and at the end we discuss an example of subjective morphological methods
application in the problem of linear structures revealing and estimation of their statistical
reliability in the mass correlation distribution of fission fragments [1].
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2. Elements of morphological analysis [4]
As a mathematical object, an image is a vector-valued function f(·) : Y → RN , where RN is
the N -dimensional Euclidean space, while Y is a bounded closed domain in the plane R2

or its discrete representation by the subset {1, 2, . . .}2. The domain Y is called the field of
view. The norm ‖f(y)‖N is called the brightness of the image f(·) at the point y ∈ Y , where
‖z‖2N = z21 + · · ·+ z2N and z = (z1, . . . , zN ) ∈ RN ; and f(y)/‖f(y)‖N is called the color of f(·) at
this point y ∈ Y . The linear operations over images are defined as

(f1 + f2)(y)
def
= f1(y) + f2(y), (a · f)(y)

def
= a · f(y), y ∈ Y. (1)

Any image f(·) (including Y ) is µ-measurable and the function ‖f(·)‖2N is µ-integrable (a measure
µ is defined on the Borel class of R2). The set of images, which is denoted by L2

µ(Y ), is a

Euclidean space in which ‖f‖2∞ =
∫
Y ‖f(x)‖2N µ(dx) <∞ and (f ,g)∞ =

∫
Y (f(x),g(x))µ(dx) are

the norm of the image f(·) and the scalar product of the images f(·) and g(·), respectively.

3. Form of an image and of a class of scene images [4]
Let S denote a scene; let K be a set of recording conditions for scene images, such as weather
conditions, illumination characteristics, the reflectivity of the elements of S, etc.; and let

VS = (f(·, k) ∈ L2
µ(Y ), k ∈ K) (2)

denote the class of images of S that can be obtained under all recording conditions k ∈ K. The
class VS contains all data on the geometric characteristics of S and on the forms of its elements,
which are represented by its images f(·, k), k ∈ K. Choosing an image f(·) ∈ VS , we define the
class

VS(f) = {g(·) ∈ VS , g(·) � f(·)} (3)

of images g(·) ∈ VS that represent the geometric characteristics of elements of S in no more
detail than f(·) ∈ VS . In paper [4] the class VS(f) is called the form of images of f(·). An
image g(·) is comparable in form with f(·), but may be simpler than or as complicated in form
as f(·) and possibly doesn’t represent all the details of the form of S that are represented in f(·).
In equation (3) the relation � defines a partial quasi-order on VS : it is reflexive and transitive.

If g(·) � f(·) and f(·) � g(·), then the images f(·) and g(·) are equivalent in form; i.e., they
represent the form of S to an identical degree of detail (written as f(·) ∼ g(·)). Therefore, each
image f(·) ∈ VS is associated with the class ES(f) = {g(·) ∈ VS ,g(·) ∼ f(·)}, f(·) ∈ VS , of
images that are equivalent in form to f(·). The class VS(f) is a convex cone in L2

µ(Y ) and is

usually a closed set in L2
µ(Y ) for any image f(·) ∈ VS . Under these conditions, there exists an

operator Πf : L2
µ(Y )→ L2

µ(Y ) defined by the condition

‖g(·)−Πfg(·)‖ = inf
h(·)∈VS(f)

‖g(·)− h(·)‖, g(·) ∈ L2
µ(Y ), (4)

which is called the projection operator onto VS(f). This operator Πf is also called the form of
the image f(·).

4. Oblique projection [6]
Let L2

µ(Y ) = L2
µ,1(Y ) ⊕ L2

2,µ(Y ) be the decomposition of L2
µ(Y ) into a direct generally not

orthogonal sum of subspaces L2
µ,1(Y ) and L2

µ,2(Y ). Accordingly, for any image f(·) ∈ L2
µ(Y )

let f(·) = f1(·) + f2(·) be its unique representation as the sum of images f1(·) ∈ L2
µ(Y ) and

f2(·) ∈ L2
µ(Y ). The operator S: L2

µ(Y ) → L2
µ(Y ), defined for any f(·) ∈ L2

µ(Y ) by the relation

Sf(·) = f1(·), is called the oblique projector onto L2
µ,1(Y ) parallel to (along) L2

2,µ(Y ). In the
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Figure 1. An example of oblique
projecting: R3 = R1 ⊕ R2, oblique
projector S(1) projects ontoR1 alongR2,
S(2) = I − S(1) projects onto R2 along
R1, f = f (1) + f (2), the space R1

can be interpreted as the form of the
signal (image) f (1), R2 is the form of
the disturbance f (2), R1 ⊕ R2 = R3,
R1 ∩ R2 = ∅, – the form of the
image f . In this case the oblique
projecting reveals from the signal f the
signals f (1) and f (2), while Πf (1)f =

Πf (1)f
(1) + Πf (1)f

(2) = f (1) + Πf (1)f
(2) and

Πf (2)f = Πf (2)f
(1) + f (2) are the most

accurate approximations of f by signals
f (1) ∈ R1 and f (2) ∈ R2.

case of a finite-dimensional Euclidean space, for example, RN , any of its subspaces, say, Rk, has
infinitely many complements RN−k of Rk , RN=Rk ⊕ RN−k, and oblique projectors onto Rk
along RN−k representing them (see figure 1).

5. Subjective modeling [7]
Methods were considered in [7] for the mathematic modeling of incomplete and unreliable
knowledge about the model M(x) of the research object expressed in the form of subjective
judgments made by the r-m about the possible values of the unknown parameter x ∈ X
defining the model. The mathematical model of subjective judgments is defined as the space
(X,P(X),Plx̃,Belx̃) with the plausibility measure Plx̃(·) : P(X) → L and belief measure

Belx̃(·) : P(X) → L̂, where X is the set of all possible values of the unknown parameter x
defining the model M(x), P(X) is the class of all the subsets of X, the indeterminate element
(i.el.) x̃ ∈ X characterizes (as an undefined propositional variable) the subjective judgments
made by the r-m about the validity of each value x ∈ X by the values of measures such as the
plausibility Plx̃(x̃ = x) of the equality x̃ = x, and belief Belx̃(x̃ 6= x) in the inequality x̃ 6= x. If
there are observational data on the subject, available to the r-m he can use them to construct
an empirical estimate of the i.el. x̃ and an empirical model (X,P(X),Plx̃,Belx̃) of the subjective
judgments about possible values of x ∈ X.

The scales of measures of plausibility Plx̃ and belief Belx̃ are L = ([0, 1],≤,+,×) and

L̂ = ([0, 1],≥, +̂, ×̂), respectively, where operations of addition +, +̂ and multiplication ×,
×̂ are determined by the equalities

a+ b = max{a, b}, a+̂b = min{a, b},
a× b = min{a, b}, a×̂b = max{a, b},

a, b ∈ [0, 1]. (5)

For each set E ∈ P(X) measures Plx̃ and Belx̃ are determined by the equalities

Plx̃(E) ≡ Plx̃(x̃ ∈ E) = sup
x∈E

tx̃(x), E 6= ∅; Plx̃(∅) ≡ 0,

Belx̃(E) ≡ Belx̃(x̃ ∈ E) = inf
x∈X\E

t̂x̃(x), E 6= X; Belx̃(X) = 1,
(6)

where tx̃(x) = Plx̃(x̃ = x), t̂x̃(x) = Belx̃(x̃ 6= x), x ∈ X. The functions tx̃(·) : X → L and

t̂x̃(·) : X → L̂ are called the distributions of plausibilities and beliefs of the values x, their values
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tx̃(x) and t̂x̃(x) in equation (6) determine the plausibility of the equality x̃ = x and, accordingly,
the belief of the inequality x̃ 6= x, x ∈ X, the values Plx̃(E) and Belx̃(E) in equation (6) are the
plausibility and belief of the inclusion x ∈ E ∈ P(X). The space (X,P(X),Plx̃,Belx̃), in turn,
completely characterizes the i.el. x̃ and is further referred to as its model.

6. The subjective morphological model [8]
As it is shown in [6], [8], the oblique projector can be obtained by solving the problem of
optimal estimation of the signal f (1) within the subjective morphological model of observations
defined by r-m, in which the signal f (1) and the disturbance f (2) are realizations of independent
indeterminate vectors f̃ (1) and f̃ (2), respectively. Their values are observed according to the
scheme f̃ = f̃ (1) + f̃ (2) and they are defined by their distributions

tf̃
(i)

(f (i)) =

{
1, f (i) ∈ Ri,
0, f (i) /∈ Ri,

i = 1, 2, R1 ⊕R2 = R3, (7)

of plausibilities of their values. The optimal estimate f
(1)
∗ minimizing the error plausibility [7]

in the estimation of f̃ (1) = f (1) is determined by the condition f
(1)
∗ = S(1)f (see figure 1).

7. Real experimental data
In this section we present the results of application of oblique projecting to the problem of the
linear-point structures revealing from mass correlation distribution of 252Cf fission fragments [1].
The mass-mass distribution under analysis is presented at figure 2. Some results of oblique
projection application are presented at figure 3. Accordingly to it a researcher can eliminate from
the image under analysis the parts that are treated as disturbances. To obtain the estimation
of reliability of the linear-point structures revealed one can use the method described at [1].

Figure 2. The mass–mass distribution
of 252Cf spontaneous fission fragments.
At the right lower corner some directions
are shown which are of special interest to
the researcher. The dashed line bounds
the data area which is shown at figure 3a
and is used for morphological analysis.

8. Conclusion
The mathematical formalism for subjective modeling which can be used by a r-m to describe both
formalized and non-formalized incomplete uncertain data in various situations from “absolute
ignorance” to “complete knowledge” of the model of the research object was considered. Also
the subjective modeling for the morphological image analysis, oblique projecting methods and
an example of subjective morphological methods application in the problem of linear structures
revealing in the mass correlation distribution of fission fragments were considered.

4

International Conference on Particle Physics and Astrophysics                                                          IOP Publishing
IOP Conf. Series: Journal of Physics: Conf. Series 798 (2017) 012125         doi:10.1088/1742-6596/798/1/012125



Figure 3. a) The part of the mass-mass distribution of 252Cf fission fragments from figure 2.
Accordingly to the method considered in [1] this image is assumed to be the sum of images of
three different forms: horizontal strips, strips defined by the condition “sum of mass fragments
equals to a constant” and strips with the angle of inclination ∼ 60◦. The parameters of strips
such as their width, angle of inclination, their number and length are chosen optimally by means
of a procedure analogues to the procedure described at [1]. b) Image (a) without the calculated
oblique projection onto the form of horizontal strips. c) Image (a) without the calculated oblique
projection onto the form of strips defined by the condition “sum of mass fragments equals to
a constant”. Thus a researcher can eliminate from the image under analysis the parts that are
treated as disturbances by him.
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