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Abstract. The process of neutrino-electron scattering in a dense plasma and magnetic field
of arbitrary strength, where electrons can occupy the states corresponding to excited Landau
levels, is analyzed. The total probability of this process, summarized over all initial states of
the plasma electrons which is only physically meaningful, is calculated. Possible astrophysical
applications are discussed.

1. Introduction
Neutrino physics plays a decisive role in astrophysical cataclysms such as supernova explosions
and coalescence of neutron stars, and also in the early universe. Consequently, studies of
neutrino interactions and in particular neutrino-electron processes in an external active medium
are of considerable interest. At the same time, an investigation of neutrino processes under
such extreme physical conditions is interesting from the conceptual viewpoint since it affects
fundamental problems of quantum field theory.

A correct analysis of the neutrino propagation process in a hot dense plasma in the presence
of a strong magnetic field requires to consider the complete set of neutrino-electron processes.
Then only the probability of the process summarized over all initial states of the plasma electrons
is physically meaningful. In Ref. [1], numerical calculations of the differential cross-section of the
neutrino-electron scattering in dense magnetized plasma were performed in the limit of rather
weak magnetic field B, eB < µE, where µ is the plasma chemical potential, E is the typical
neutrino energy.1 In Refs. [2, 3], the probability of the νe→ νe process and the volume density
of the neutrino energy and momentum losses, summarized over all initial states of the plasma
electrons, were evaluated under the physical situation where the magnetic field is moderate, while
the density of plasma is large, so the conditions are satisfied: µ2 > eB � (T 2, E2)� m2

e, where
T is the plasma temperature, and eB � µE. Calculations were performed for the case when
both initial and final electrons occupy the same Landau levels, because, as it was concluded
in Refs. [2, 3], such transitions were dominating. The purpose of the present research is to
calculate analytically the probability of this process for a more general case when the initial and
final electrons could occupy any physically allowed Landau levels. Some details of the calculation
technique can be found e.g. in Refs. [4, 5, 6].

1 We use natural units in which c = ~ = 1, e > 0 is the elementary charge.
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2. Solutions of the Dirac equation for an electron in a magnetic field
It appears to be convenient to use the electron wave functions as the eigenstates of the operator
µ̂z [7, 8]:

µ̂z = meΣz − iγ0γ5[Σ× P ]z , (1)

where P = −i∇ + eA. We take the frame where the field is directed along the z axis, and the
Landau gauge where the four-potential is: Aλ = (0, 0, xB, 0). In this approach, the electron
wave functions have the form

Ψs
p,n(X) =

e−i(εnt−pyy−pzz) U sn(ξ)√
4εnMn(εn +Mn)(Mn +me)LyLz

, (2)

where εn =
√
M2
n + p2z , Mn =

√
m2
e + 2βn , β = eB , ξ =

√
β (x+ py/β) . The functions

Ψs
p,n(X) satisfy the equation: µ̂z Ψs

p,n(X) = sMn Ψs
p,n(X) (s = ±1) . The bispinors U sn(ξ) in

Eq. (2) take the form:

U−n (ξ) =


−i
√

2βn pzVn−1(ξ)

(εn +Mn)(Mn +me)Vn(ξ)

−i
√

2βn(εn +Mn)Vn−1(ξ)

−pz(Mn +me)Vn(ξ)

 , U+
n (ξ) =


(εn +Mn)(Mn +me)Vn−1(ξ)

−i
√

2βn pzVn(ξ)

pz(Mn +me)Vn−1(ξ)

i
√

2βn(εn +Mn)Vn(ξ)

. (3)

Here, Vn(ξ) (n = 0, 1, 2, . . .) are the well-known normalized harmonic oscillator functions, which
are expressed in terms of the Hermite polynomials Hn(ξ).

In this case, the process amplitude will have an explicit Lorentz invariant structure.

3. The process of the νe→ νe scattering
The effective local Lagrangian is:

L = −GF√
2

[ēγα(CV − CAγ5)e] [ν̄γα(1− γ5)ν], CV = ±1

2
+ 2 sin2 θW , CA = ±1

2
, (4)

where the upper signs correspond to νe and the lower signs correspond to νµ,τ .
The S matrix element of the subprocess νe−(`) → νe−(n) takes the form

S = i
GF√

2

(2π)3 δ(ε′n − ε` − q0) δ(p′y − py − qy) δ(p′z − pz − qz)√
2EV 2E′V 2ε`LyLz 2ε′nLyLz

e−q
2
⊥/4eB−iqx(py+p

′
y)/2eB

× [ū(p′) ̂(CV − CAγ5)u(p)] , (5)

where q = P − P ′ = p′ − p, ε` and ε′n are the energies of the initial and final electrons, q⊥ is
the projection of the vector q on the plane perpendicular to the vector B, q2⊥ = q2x + q2y , and
jα = ν̄(P ′)γα(1− γ5)ν(P ) is the Fourier tranform of the current of the left-handed neutrinos.

The total process probability per unit time can be presented in the form

W (νe− → νe−) =
1

T
∑
`

∑
n

∑
s,s′

∫
| S |2 dne− dn′e−

d3P ′ V

(2π)3
(1− f(E′)) , (6)

where dne− = f(ε`) dpy dpz Ly Lz/(2π)2 , dn′e− = (1 − f(ε′n)) dp′y dp′z Ly Lz/(2π)2 , f(ε`) is the

fermion distribution function, e.g. for initial electrons it is: f(ε`) = [e(ε`−µ)/T + 1]−1; T is the
total time of interaction, V = Lx Ly Lz is the total volume of the interaction region.

2

International Conference on Particle Physics and Astrophysics                                                          IOP Publishing
IOP Conf. Series: Journal of Physics: Conf. Series 798 (2017) 012112         doi:10.1088/1742-6596/798/1/012112



For the probability per unit time of the subprocess νe−(`) → νe−(n) one obtains

W`n =
β

(2π)416E

∫
d3P ′

E′
(1− f(E′))

∫
dpz
ε′n ε`

δ(ε′n − ε` − q0) f(ε`) (1− f(ε′n))
∑
s,s′

|Mss′
`n |2 . (7)

Taking into account possible polarisation states of the initial and final electrons, there exist four
invariant polarization amplitudes Mss′

`n , where s, s′ = ±1, which can be presented in the form:

Mss′
`n = η

GF

2
√

2

{
Ass

′
`n

(jϕ̃q)

q2‖
+Bss′

`n

(jΛ̃q)

q2‖
+ Css

′
`n

(jΛq)

q2⊥
+Dss′

`n

i (jϕq)

q2⊥

}
, (8)

where η is an inessential phase factor, ϕαβ = Fαβ/B is the dimensionless tensor of the external
magnetic field, ϕ̃αβ = 1

2 εαβµνϕ
µν is the dual dimensionless tensor; the four-vectors with the

indices ⊥ and ‖ belong to the Euclidean {1, 2}-subspace and the Minkowski {0, 3}-subspace,

correspondingly, and Λαβ = (ϕϕ)αβ = diag(0, 1, 1, 0), Λ̃αβ = (ϕ̃ϕ̃)αβ = diag(1, 0, 0,−1). In
Eq. (8), auxiliary functions are introduced: A, B, C, D. To illustrate, we give here their explicit
form for one of the possible sets of polarization, s = s′ = −1:

A−−`n =

√(
1 +

m

M`

)(
1 +

m

Mn

)
I`,n (CV τ + CA κ)

+

√(
1− m

M`

)(
1− m

Mn

)
I`−1,n−1(CV τ − CA κ) , (9)

B−−`n =

√(
1 +

m

M`

)(
1 +

m

Mn

)
I`,n (CV κ+ CA τ)

+

√(
1− m

M`

)(
1− m

Mn

)
I`−1,n−1(CV κ− CA τ) , (10)

C−−`n =
√
q2⊥

[
−

√(
1− m

M`

)(
1 +

m

Mn

)
I`,n−1 (CV u+ CA v)

−

√(
1 +

m

M`

)(
1− m

Mn

)
I`−1,n (CV u− CA v)

]
, (11)

D−−`n =
√
q2⊥

[√(
1− m

M`

)(
1 +

m

Mn

)
I`,n−1 (CV u+ CA v)

−

√(
1 +

m

M`

)(
1− m

Mn

)
I`−1,n (CV u− CA v)

]
, (12)

where, for n > `

In,`(x) =

√
`!

n!
e−x/2x(n−`)/2Ln−`` (x) , I`,n(x) = (−1)n−`In,`(x) , (13)

3

International Conference on Particle Physics and Astrophysics                                                          IOP Publishing
IOP Conf. Series: Journal of Physics: Conf. Series 798 (2017) 012112         doi:10.1088/1742-6596/798/1/012112



Lkn(x) are the generalized Laguerre polynomials, and also:

κ = u (Mn −M`) , τ = v (Mn +M`) , u =
√

(Mn +M`)2 − q2‖ , v = α ζ
√

(Mn −M`)2 − q2‖ .

Here, α = q0/|q0| is the sign of q0, ζ = ±1 is the sign factor associated with the two roots of the
equation, corresponding to the zeros of the δ function argument in Eq. (7). In the frame where
qz = 0, ζ is the sign of the pz component, which is not fixed by the equation.

Calculations of the process probability per unit time (6) with Eqs. (7)–(13) should be
performed numerically for different values of the physical parameters B, T, µ,E etc., and we
plan to present the results in an extended paper. It should be noted, that, in contrast to
calculations of Refs. [5, 6], in the present case no upper limits arise on the Landau level numbers
`, n from kinematics, and the suppression of the large number contributions is provided by the
distribution functions of initial and final electrons.

As the numerical analysis shows, the assumption made in Refs. [2, 3], that the subprocesses
were dominating where both initial and final electrons occupied the same Landau levels, was
incorrect. This means that the results for the probability of the νe → νe process obtained in
Refs. [2, 3], were underestimated.

4. Conclusions
The probability of the νe→ νe process in a dense magnetized plasma is calculated analytically,
for a general case when the initial and final electrons could occupy any physically allowed
Landau levels. The analysis shows, that the assumption made in previous calculations, that the
subprocesses were dominating where both initial and final electrons occupied the same Landau
levels, was incorrect.

In astrophysical applications, the mean values of the neutrino energy and momentum losses
could be more interesting: Qα = E

∫
(P − P ′)α dW = −E (I,F ) . where dW is the total

differential probability of the process. The zeroth component of Qα is connected with the mean
energy lost by a neutrino per unit time due to the process considered, I = dE/dt. The space
components of the four-vector Qα are similarly connected with the mean neutrino momentum
loss per unit time, F = dP /dt. An analysis of the four-vector Qα in a general case for the
magnetic field of arbitrary strength, where electrons can occupy the states corresponding to
excited Landau levels, now is in progress. The force density F could lead to a very interesting
consequences if a strong toroidal magnetic field is generated in the supernova envelope, providing
an asymmetry of the supernova explosion and, in particular, it can explain the phenomenon of
high pulsar kick-velocities, for details see Ref. [4].
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