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Abstract. The Starobinsky inflationary model fits very well the observational
data. We study some variations around this model by adding an exponential
term in the Lagrangian. This modification allows to test the robustness of the
Starobinsky model.

1. Introduction
Inflation is a primordial phase of accelerated, quasi-exponential expansion of the
universe required in order to solve the flatness and horizon problems, which plague
standard Friedmannian cosmology. In most of the models, inflation is driven by a
self-interacting scalar field φ, known as inflaton, whose origin should be related to
fundamental theories. For a clear explanation of these different aspects of modern
cosmology, see Ref. [1].

The condition for which inflation is triggered is called slow roll and it is
parametrised by two slow-roll parameters defined as follows:

ε ≡
M2
Pl

2

(
V ′

V

)2

, η ≡M2
Pl

V ′′

V
, (1)

where MPl is the Planck mass, V (φ) is the potential term, and the prime denotes
derivative with respect to φ. When ε, η � 1 then the condition φ̇2 � V is attained,
i.e. the scalar field kinetic term is much smaller than the potential one. Therefore,
the scalar field energy density is dominated by V (φ), which is almost constant,
providing thus the accelerated, quasi-exponential expansion required.

Cosmological observables such as the spectral index of scalar and tensor
perturbations are directly related to the slow-roll parameters:

ns = 1− 6ε+ 2η , nT = −2ε . (2)

The recent cosmological observational data restrict considerably the viable
inflationary models [3, 4, 5, 6]. One of the strongest candidate to describe the
inflationary scenario is the Starobinsky model [7, 8, 9]. In its original form, it
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is based on a non-linear Lagrangian inspired from quantum effects and it can be
viewed as an f(R) model with f = R + αR2, i.e. a quadratic correction to the
Einstein-Hilbert term.

In this text, we analyse the Starobinsky model from a dynamical system
perspective and propose a generalisation that may lead to new interesting features.

2. Inflationary models from f(R) theories
We start here showing why the R2 correction of the Starobinsky model is somewhat
special. Consider a generic f(R) theory [11]:

S =
1

2κ2

∫
d4x
√
−gf(R) , (3)

and assume a flat FLRW metric:

ds2 = −dt2 + a(t)2δijdx
idxj . (4)

One can easily cast the evolution equation for f(R) gravity as a dynamical system
formed by the following equations:{

Ṙ = 1
6Hf ′′

[
Rf ′ − f − 6f ′H2

]
,

Ḣ = R
6 − 2H2 ,

(5)

where H ≡ ȧ/a, the dot denoting derivation with respect to the cosmic time and the
prime denoting derivation with respect to R. Here, we assumed f ′′ and H different
from zero. For the properties of a dynamical system, see Ref. [12].

Looking for the critical points of the above autonomous system, i.e. setting to
zero both the above equations and solving them simultaneously, one obtains the
following ordinary differential equation for f :

f ′

f
=

2

R
, (6)

which has the solution

f(R) = αR2 , (7)

where α is an integration constant. Here is appears the quadratic term R2 as a
special case of f(R) theories for which the original dynamical system can be written
as: {

Ṙ = R
12H

[
R− 12H2

]
,

Ḣ = R
6 − 2H2 .

(8)

We can now study the nature of the critical points. Linearising the dynamical
system about a critical point R0 = 12H2

0 , we obtain:{
ε̇ = H0ε− 24H2

0η ,

η̇ = ε
6 − 4H0η .

(9)

The secular equation for the above system matrix is λ(λ+3H0) = 0. Therefore, one
eigenvalue is vanishing and the other is negative (for H0 > 0, which is the region
of our interest). This means that the critical points are attractors. The phase
diagram is displayed in figure 1a. Physically, in this model inflation can happen at
any energy and this of course is not satisfactory.
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3. The Starobinsky model
The Starobinsky model [7, 8, 9], defined by f(R) = R + αR2, on the other hand,
tells a different story. The dynamical system for this case becomes:{

Ṙ = 1
12Hα

[
αR2 − 6H2(1 + 2αR)

]
,

Ḣ = R
6 − 2H2 ,

(10)

in which α can be arranged as follows:{
α3/2Ṙ = 1

12H
√
α

[
α2R2 − 6αH2(1 + 2αR)

]
,

αḢ = αR
6 − 2αH2 ,

(11)

in order for the dimensionless quantities αR, αH2 and t/
√
α to appear.

Looking for critical points at finite distance from the origin in the phase-space
(H,R), we put Ḣ = 0, obtaining thus R = 12H2 implying:{

Ṙ = − H
2α ,

Ḣ = 0 .
(12)

Therefore, we conclude that R = 0 = H, i.e. Minkowski space, is a critical point.
In Starobinsky’s model there are also two critical points at infinity. These points

can be studied by using suitable transformations in the variables in order to make
them finite at the region representing the infinity of the phase space diagram. One
of these points at infinity represents a de Sitter repeller and thus may provide a
transient phase of inflation at high-energy scales, i.e. for αR � 1. The phase
diagram for the Starobinsky model is displayed in figure 1b.

4. An exponential extension of the Starobinsky model
Since Starobinsky’s model is very successful, it is interesting to investigate small
deviations from it in order to test its robustness. What we learned from the
dynamical system analysis of the previous section is that f(R) should be quadratic
only for large values of R. Therefore, we propose the following model:

f(R) = R+ αR2 − 2Λe−αR , (13)

i.e. an exponential correction of Starobinsky’s model. For αR � 1 our model
reproduces the successful inflationary paradigm of Starobinsky’s model and when
αR� 1, the above function f(R) can be approximated as

f(R) ∼ R− 2Λ . (14)

The dynamical system becomes:{
Ṙ = 1

12Hα
αR2+2Λ(αR+1)e−αR−6H2−12H2αR−12H2αΛe−αR

1−αΛe−αR
,

Ḣ = R
6 − 2H2 .

(15)

Looking for critical points, we get the same ones as in Starobinsky’s model at
infinity, representing inflation, and other new ones at the finite region given by the
following transcendental equation:

R = 2Λ(αR+ 2)e−αR . (16)
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(a) (b) (c)

Figure 1: (a) Phase diagram for the R2 model; (b) Equatorial plane of the
Poincaré’s sphere for the f(R) = R + αR2 model; (c) Phase space diagram for
the f(R) = R+ αR2 − 2Λe−αR model;

For αR� 1, the above equation can be solved approximately as:

R ≈ 4Λ

1 + 2αΛ
. (17)

The phase diagram for this extended Starobinsky model is displayed in figure 1c.
Let us inspect better such exponential extension of the Starobinsky model. A

given f(R) theory can be mapped into a scalar-tensor theory in the Jordan frame.
Then, upon the conformal transformation ĝµν = κφgµν , we can write the action in
the Einstein frame as follows:

S =

∫
d4x
√
−g
[

1

2κ2
R̂− 1

2
ĝµν∂µχ∂νχ− U(χ)

]
, (18)

where

U ≡ V

κ2φ2
, χ ≡

√
3

2

1

κ
lnκφ . (19)

For the exponential model (13), the above defined quantities take the following
form:

κφ = 1 + 2αR+ 2αΛe−αR , 2κ2V = αR2 + 2Λ(αR+ 1)e−αR . (20)

Finding an explicit form V (φ) for the potential in terms of elementary functions
seems not possible. Formally, using the Lambert W function (or product logarithm),
we can write:

2αR = κφ− 1 + 2W
[
−αΛe(1−κφ)/2

]
. (21)

The more intriguing feature of the potential of our exponential model, compared
with the Starobinsky’s model’s one, is the presence of a minimum for a non-vanishing
value of the scalar field near the origin. This suggests that the reheating phase of
the Universe takes place earlier, if compared with the Starobinsky’s model.

4

International Conference on Particle Physics and Astrophysics                                                          IOP Publishing
IOP Conf. Series: Journal of Physics: Conf. Series 798 (2017) 012092         doi:10.1088/1742-6596/798/1/012092



0 1 2 3 4 5 6 7

0.00

0.02

0.04

0.06

0.08

0.10

0.12

κχ

α
κ
2
U

(a)

0 1 2 3 4

0.0

0.5

1.0

1.5

2.0

κχ

ϵ,
η

(b)

55 60 65 70 75

0.964

0.966

0.968

0.970

0.972

0.974

N

n

(c)

Figure 2: (a)Evolution of the effective potential U(χ), the black solid line
represents Starobinsky’s model (i.e. Λ = 0), whereas the red-line is its exponential
extension for αΛ = 0.1; (b)Evolution of the slow-roll parameters εU (black lines) and
ηU (red lines), the solid lines represent Starobinsky’s model (i.e. Λ = 0), whereas
the dashed lines are their exponential extensions for αΛ = 0.1; (c)Evolution of the
spectral index ns as function of the e-fold number N , the black solid line represents
Starobinsky’s model (i.e. Λ = 0), whereas the red-line is its exponential extension
for αΛ = 0.1;

Let us now investigate the slow-roll parameters. They can be defined using the
potential U(χ) in the definitions of equation (1). The end of the inflationary period,
i.e. when εU ≈ 1, takes place for smaller values of the field χ in the exponential
extension of Starobinsky’s model.

The number of e-foldings is defined as:

N ≡ κ2

∫ χ

χf

U

U,χ
dχ , (22)

where χf is the scalar field at which inflation ends. Usually, that is determined by
the condition εU (χf ) = 1. The observables quantities are given by equation (2) and
the the tensor-to-scalar power ratio r = −8nt.

The Planck collaboration put the following constraints on these quantities [4, 5]:

ns = 0.968± 0.006 , r < 0.12 , (23)

the former being at 68% CL and the latter at 95% CL. We can verify from figure
2c that the predictions for the the extended Starobinsky model are very near the
original model, what assures a good agreement with the observational test. However,
it is important to investigate the production of gravitational waves in such extended
model, in order to verify if it can increase the possible values of the parameter r
with respect to the predictions of the original model.

5. Conclusions
The Starobinsky model of inflation is very successful and fits very well the
observational data. One of the characteristic of such model is the very low
production of gravitational waves, since the parameter r, measuring the ratio
between the tensorial and scalar contribution to the anisotropy of the cosmic
microwave background radiation is very small. An eventual of a future detection of
primordial gravitational waves may imply the falsification of the Starobinsky model.

We have studied an extension of the Starobinsky model by adding an exponential
term in the Lagrangian such that good behaviour of the original model is preserved,
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in particular the presence of critical points at the infinity region of the phase
diagram. New features appear, essentially related to the appearance of new critical
points at the finite region, representing a second de Sitter phase, which can be an
attractive critical point. This creates the possibility to have a primordial inflationary
phase, followed by ”normal” phases in the evolution of the universe, and ending in
a new inflationary phase (present stage of accelerated expansion?).

The observational predictions of the extended Starobinsky model seems to fit
observations. But, a detailed study of gravitational wave production in this new
model is necessary and constitute an important constraint for it.
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