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Abstract. An Electro-Magnetic Acoustic Transducer (EMAT) is a non-contact source used in 

Ultrasonic Testing (UT) which generates three types of dynamic excitations into a 

ferromagnetic part: Lorentz force, magnetisation force, and magnetostrictive effect. This latter 

excitation is a strain resulting from a magnetoelastic interaction between the external magnetic 

field and the mechanical part. Here, a tensor model is developed to transform this effect into an 

equivalent body force. It assumes weak magnetoelastic coupling and a dynamic magnetic field 

much smaller than the static one. This approach rigorously formulates the longitudinal Joule’s 

magnetostriction, and makes it possible to deal with arbitrary material geometries and EMAT 

configurations. Transduction processes induced by an EMAT in ferromagnetic media are then 

modelled as equivalent body forces. But many models developed for efficiently predicting 

ultrasonic field radiation in solids assume source terms given as surface distributions of stress. 

To use these models, a mathematical method able to accurately transform these body forces 

into equivalent surface stresses has been developed. By combining these formalisms, the 

magnetostrictive strain is transformed into equivalent surface stresses, and the ultrasonic field 

radiated by magnetostrictive effects induced by an EMAT can be both accurately and 

efficiently predicted. Numerical examples are given for illustration. 

1.  Ultrasonic Testing using EMAT in ferromagnetic materials 

In Ultrasonic Testing (UT), elastic waves are generated into the solid under examination by 

transducers. In most cases, piezoelectric transducers are used, operating from outside through a 

medium which mechanically couples them to the solid. When the use of such coupling is avoided or if 

piezoelectric transducers are not adapted to the need, the implementation of alternative non-contact 

solutions is required. For this, the piece under examination is excited by an external source of a 

physical field of non-mechanical nature (e.g. electromagnetic). The interaction of this field with the 

elastic part converts the non-mechanical energy involved into dynamic mechanical effects within the 

piece material, which in turn becomes a source of elastic waves. Electro-Magnetic Acoustic 

Transducers (EMAT) [1,2] are among the main non-contact probes currently used in UT. Since no 

coupling medium is needed, such sensors are practically suitable to operate in harsh conditions (high 

gradients of pressure, temperature). Another attractive aspect of EMAT consists in its ability to excite 

multiple modes with a high reproducibility, giving the opportunity to design various testing 

applications [3]. However, EMATs usually present low signal-to-noise ratios (compared to 

piezoelectric ones), and are strongly configuration and material dependent which brings some 

complexities to the modelling process. Generally, EMATs are made of one (or several) permanent 

magnet(s) and coil(s). The dynamic transduction processes they generate are produced by 

15th Anglo-French Physical Acoustics Conference (AFPAC 2016)                                                   IOP Publishing
IOP Conf. Series: Journal of Physics: Conf. Series 797 (2017) 012004          doi:10.1088/1742-6596/797/1/012004

International Conference on Recent Trends in Physics 2016 (ICRTP2016) IOP Publishing
Journal of Physics: Conference Series 755 (2016) 011001 doi:10.1088/1742-6596/755/1/011001

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1



 

 

 

 

 

 

electromagnetic fields from the different constituting elements through a lift-off usually assumed to be 

made of air. The mechanical sources are generated in a thin layer below the solid free (of coupling 

medium) surface. The layer thickness depends on both characteristics of the excitation fields involved 

and on the ability of the solid medium to transform them into dynamic mechanical energy. The 

operating principle of an EMAT is shown in figure 1: 

 

 

 

 

 

 

Figure 1. Operating principle of an ElectroMagnetic Acoustic Transducer (EMAT). 

  

Three main electromagnetic dynamic excitations coexist in case of ultrasounds generation by 

EMAT into a ferromagnetic material. They are discussed in the following subsections. 

1.1.  Lorentz force 

This fundamental phenomenon appears in any conductive material. It represents the force which acts 

on moving charges [4,5]. In EMAT applications, the magnetic Lorentz force stems from the 

interaction between the eddy currents density 𝐉  [A.m−2] and the magnetic induction field 𝐁 [T] in the 

material, with a static component produced by the permanent magnet and a dynamic one generated by 

the coil. The Lorentz body force per unit volume [N.m−3] is commonly expressed as: 
 

 𝐟𝐋 = 𝐉 × 𝐁. (1) 

1.2.  Magnetisation force 

This dynamic excitation is specific to ferromagnetic materials and can be understood as the force 

acting on atomic magnetic moments inside the material in the presence of a spatially varying magnetic 

field. Indeed, ferromagnetic materials are divided up into magnetic domains, namely the Weiss 

domains separated by Bloch interfaces, within which the orientation of all the particle magnetic 

moments are aligned along the same direction [6]. The application of an external magnetic field on a 

ferromagnetic material reorganizes the orientation of these atomic magnetic moments in order to align 

them along the external magnetic field direction, as illustrated below in figure 2: 

 

 

 

 

 

 

 

Figure 2. Weiss domains and atomic magnetic moment reorientation under external magnetisation. 

 

The magnetisation process is then the force responsible for the reorientation of these atomic 

magnetic moments inside the sample, and corresponds finally to a macroscopic evidence of 

microscopic phenomena. The expression of the magnetisation body force per unit volume [N.m−3] 
takes several forms in the literature which can lead to theoretical confusion, principally due to the 

choice of the magnetic fields involved in this phenomenon. It is not the purpose of this work to 

properly address the question of what formulation is the most appropriate. Denoting the magnetisation 

field by 𝐌  [A.m−1] and the magnetic field by 𝐇  [A.m−1], the expression of the magnetisation body 

force adopted here (taken from [4,5]) is given by the relation: 
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 𝐟𝐌 = μ0(𝐌. 𝛁)𝐇,  (2) 
 

where μ0 [H.m
−1] is the magnetic permeability in vacuum.  

1.3.  Magnetostrictive effects 

This phenomenon is also specific to ferromagnetic materials. It is related to magnetoelastic 

interactions at the material microscopic scale. Precisely, the ‘magnetostriction’ term stands for all the 

elastic variations of a magnetic material under external magnetic fields. Several types of 

magnetostrictive effects (direct or inverse) are referenced in the literature [5,6]. Here, the discussion is 

focused on the longitudinal Joule’s magnetostriction, cited as the main impacting effects in our 

applications area [6,7]. These magnetostrictive effects result from the displacement of Bloch interfaces 

within the ferromagnetic part under external magnetisation, which creates a strain at the macroscopic 

scale measured along the magnetisation direction. Like the magnetisation force, the magnetostrictive 

effects depict a macroscopic manifestation of microscopic phenomena, which can be illustrated by 

figure 3: 

 

 

 

 

 

 

 

Figure 3. Magnetostrictive strain measured along the external magnetic field. 

 

As mentioned, this phenomenon reduces at the macroscopic scale to a dimensional change (a 

strain). For the sake of an efficient semi-analytical model of ultrasound generation by EMAT, a model 

allowing the transformation of this magnetostrictive deformation into an equivalent body force of 

magnetostriction is needed. This is the purpose of the next section. 

2.  Modelling the equivalent body force of magnetostriction under a strong static magnetic field 

The aim here is to establish an equivalent body force model which faithfully represents the direct 

longitudinal Joule’s magnetostriction phenomenon previously described, that is to say, the 

macroscopic material deformation under an external magnetisation varying both with time and space. 

We assume first that these effects are magnetically isotropic at macroscopic scale and create 

isovolume dimensional change. These assumptions are commonly encountered in the literature [2,6,8], 

but an extension of the model could easily be done if needed to avoid making them. A weak 

magnetoelastic coupling is also assumed inside the ferromagnetic part. This could be justified by 

considering that the involved electromagnetic interaction volume is only restricted to a thin surface 

layer of the material which is limited by the electromagnetic skin depth: 
 

 𝛿 = √
1

𝜋𝑓𝜇𝜎
 ,  (3) 

 

where 𝑓 is the inspection frequency, 𝜇 is the magnetic permeability, and 𝜎 the electric conductivity of 

the material being tested. Since the electromagnetic skin depth 𝛿 is much smaller than the wavelength 

𝜆 of the acoustic wave produced in most EMAT applications (𝛿 ≪ 𝜆), the elastic waves which 

propagate below the surface into the part are assumed not to appreciably alter the electromagnetic 

fields confined in this close electromagnetic interaction vicinity of the part surface.  

Under such assumptions, the electromagnetic quantities are known by solving the classical set of 

Maxwell’s equations inside the concerned material volume (in a quasi-static approximation 

considering the inspection frequencies generally below than 10 MHz in our application cases). The 
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problematic addressed here is then to rigorously formulate the magnetostrictive transduction process 

starting from the knowledge of these electromagnetic fields. Inspired by [9], the idea in the present 

work is to model the three-dimensional magnetostrictive strain εij
MS from the magnetic field 𝐇 as: 

 

 εij
MS(𝐇) = λ(‖𝐇‖)Sij(𝐇).  (4) 

 

This tensorial formulation involves two main terms which respect all the assumptions being made: 

 The elementary magnetostrictive strain λ is measured in the direction of magnetisation and is 

only dependent on the studied material and the magnetic field intensity ‖𝐇‖. This parameter is 

assumed to be a scalar in order to fulfil the macroscopic magnetic isotropy hypothesis, and can 

be obtained for example by interpolation of experimental data, as illustrated in figure 4:  

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

Figure 4. Dependency of the elementary magnetostrictive strain with the magnetic field intensity.  

 

The formulation can also be easily extended to the case of magnetically anisotropic materials 

by considering 𝛌 as a second order tensor, written for example in the basis of easy 

magnetisation axes [6,10]. 

 The magnetic direction tensor 𝐒 is a second order symmetric tensor only depending on the 

direction of the total magnetic field 𝐇, and is expressed as: 
 

 𝐒(𝐇) =
1

2‖𝐇‖2
(3𝐇⨂𝐇− ‖𝐇‖2𝐈),  (5) 

 

where the symbol ⨂ denotes the tensor product and 𝐈 is the second order identity tensor. The 

tensor 𝐒 is defined irrespective of the coordinate system used and helps modelling an 

isovolume dimensional change by verifying a null trace. It formulates this assumption by 

catching the principal direction of the total magnetic field and by assigning half the opposite 

value in the two other perpendicular directions. For example, in case of a total magnetic 

field 𝐇 = H3𝐞𝟑, this tensor takes the following form: 
 

 𝐒 = (
−0.5 0 0
0 −0.5 0
0 0 1

).  (6) 

 

Based on this representation of the magnetostrictive strain, the next fundamental mathematical step 

relies on the fact that the total magnetic field is a superposition of a static part (induced by the 

15th Anglo-French Physical Acoustics Conference (AFPAC 2016)                                                   IOP Publishing
IOP Conf. Series: Journal of Physics: Conf. Series 797 (2017) 012004          doi:10.1088/1742-6596/797/1/012004

4



 

 

 

 

 

 

permanent magnet(s)) and of a dynamic part (induced by the coil(s)). In most EMAT applications, the 

intensity of the current flowing in the coil is small enough to ensure that the dynamic part of the 

magnetic field is much smaller than the static bias magnetic field. So, one has:  
 

 𝐇 = 𝐇𝐒 +𝐇𝐃, with:  𝐇𝐃 ≪ 𝐇𝐒.  (7) 
 

Considering the magnetostrictive strain εij
MS as a function of the magnetic field 𝐇, its first order 

Taylor expansion around the static magnetic field 𝐇𝐒 position leads to:  
 

 εij
MS(𝐇 = 𝐇𝐒 +𝐇𝐃) = εij

MS(𝐇𝐒) +
𝜕εij
MS

𝜕Hk
(𝐇𝐒)HDk + o(‖𝐇𝐃‖

2).  (8) 

 

This simple development is particularly suitable since it provides a rigorous mathematical 

formulation which enables a relevant physical interpretation of the magnetostrictive phenomenon 

under the assumption of a strong static magnetic field. Indeed, the first term 

εij
MS(𝐇𝐒) = λ(‖𝐇𝐒‖)Sij(𝐇𝐒) depicts the time-independent longitudinal magnetostrictive strain which 

appears along the static field, and which can be seen as a spontaneous initial state of the ferromagnetic 

material under the external static magnetic field. The second term is the time-dependent leading term 

which gives rise to the ultrasonic elastic waves into the sample. It involves the third order 

piezomagnetic strain tensor dijk
MS evaluated at the static magnetic position and defined by the partial 

derivative of the magnetostrictive strain over the total magnetic field. This tensor is widely used in the 

literature when dealing with the linearized magnetoelastic coupled equations (see for example [2,11]). 

Taking benefits from the analytical tensorial expression of  𝐒, one can derive an analytical expression 

for the piezomagnetic strain tensor dijk
MS by means of some tensorial and differential analyses: 

 

 𝐝𝐌𝐒(𝐇) =
𝜕𝛆𝐌𝐒

𝜕𝐇
=
φ(‖𝐇‖)

‖𝐇‖
𝐒⨂𝐇+

3λ(‖𝐇‖)

‖𝐇‖2
[
𝐇⨂𝐈

2
−
𝐇⨂𝐇⨂𝐇

‖𝐇‖2
] , with:  φ(‖𝐇‖) = λ′(‖𝐇‖).  (9) 

 

In the previous expression, the operator ⨂ between a vector 𝐯 and a second order tensor 𝐓 is given 

in Voigt notation by: [𝐯⨂𝐓]
ijk
= viTjk + vjTik. This analytical tensorial expression is interesting since 

it models a general way to study the dynamic component of the magnetostrictive strain irrespective of 

the EMAT configuration and the geometry of the ferromagnetic part, which is quite missing in the 

literature. By using the elastic stiffness tensor  ℂ, the piezomagnetic stresses can be written as: 
 

 𝛔𝐌𝐒 = −ℂ : [𝛆𝐌𝐒(𝐇𝐒) + 𝐝
𝐌𝐒(𝐇𝐒).𝐇𝐃],  (10) 

 

where the symbol : denotes the tensorial double contraction product. This expression must be 

completed by taking into account free surface boundary condition in order to reproduce the physical 

context of the study (for example discussed in [1]). Denoting by 𝜕Ω the part surface and by 𝐧 the 

outgoing normal vector to 𝜕Ω, this condition is given by: 
 

 𝛔𝐌𝐒. 𝐧 = 𝟎   on 𝜕Ω.  (11) 
 

Finally, by taking the divergence of these piezomagnetic stresses, the modelling of equivalent body 

force of magnetostriction is achieved: 
 

 𝐟𝐌𝐒 = 𝛁.𝛔𝐌𝐒.  (12) 
 

The useful aspect of the mathematical approach in the present paper comes from its ability to deal 

with arbitrary coordinate system, allowing us to derive such a magnetostrictive equivalent body force 

for ferromagnetic parts of complex shape and irrespective of EMAT configuration.  Of course, 

literature results for simpler cases can be straightforwardly derived from this model. For example, 
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when an elastic homogeneous isotropic planar material in the x-y plane is considered with a static 

magnetic field along the depth of the material (𝐇𝐒 = Hs𝐞𝐳), the formulation presented here reduces to 

the academic expression of the magnetostrictive body force given by [1,2]: 
 

 𝐟𝐌𝐒 =

(

  
 

μLφ(HS)
𝜕HDz

𝜕x
−
3μLλ(HS)

HS

𝜕HDx

𝜕z

μLφ(HS)
𝜕HDz

𝜕y
−
3μLλ(HS)

HS

𝜕HDy

𝜕z

−2μLφ(HS)
𝜕HDz

𝜕z
−
3μLλ(HS)

HS
[
𝜕HDx

𝜕x
+
𝜕HDy

𝜕y
])

  
 
,  (13) 

 

where μL is the second Lamé’s parameter (shear modulus). 

By using the presented model of magnetostrictive equivalent body forces, the next section aims at 

giving a suitable mathematical process enabling to accurately and efficiently predict the ultrasonic 

field radiated by the dynamic magnetostrictive sources generated by EMAT. 

3.  Transformation into magnetostrictive equivalent surface stresses 

3.1.  General concept of mathematical transformation of body forces into equivalent surface stresses 

In ultrasonic nondestructive evaluation (NDE), accurate knowledge of the ultrasonic field radiated by 

the source is of paramount importance as soon as quantitative results are expected, that is to say, if the 

method of examination is designed to go as far as defect characterization and sizing. For this reason, in 

the vast literature, many models have been developed to compute field radiation by ultrasonic sources. 

Among them, many models were developed to predict fields radiated by mechanical sources operating 

at the surface of the solid, as those generated by piezoelectric transducers in direct contact. The 

calculation of the elastic wave field radiated by a point-source of normal or tangential stress in an 

elastic half-space, that is to say, the Green’s function of the so-called Lamb’s problem, is the subject 

of hundreds of papers in the literature, including exact, approximate or numerical solutions and 

dealing with a variety of elastic media, after Lamb’s pioneering contribution [12]. For finite-size 

sources, a simple surface and time convolution of the time-dependent surface stress distribution with 

one such solution for a point source leads to predict source diffraction effects [13]. It is our aim to use 

this kind of time and surface convolution models to predict the field radiated by non-contact sources. 

But since at this stage, all the dynamic excitations induced by EMAT in ferromagnetic materials are 

expressed as a volume distribution of electromagnetic body forces, a mathematical method is needed 

to accurately transform these body forces into equivalent surface stresses distribution, that is to say, 

which radiate the same ultrasonic field into the mechanical part. 

Let us consider an open set Ω embodying the elastic domain of the part under test. We want to 

study the representation of particle displacement field 𝐮(𝐱) radiated at an observation point 𝐱 ∈ Ω by a 

distribution of time-harmonic body force  𝐟(𝐱𝟎)e
iωt, where ω denotes the angular frequency and  𝐱𝟎 ∈

Ω denotes the source points. For clarity, the factor eiωt will be omitted in what follows. The exact way 

for determining the particle displacement field consists in a spatial volume convolution integral of 

body forces 𝐟(𝐱𝟎) with the Green’s tensor 𝐆(𝐱, 𝐱𝟎) for elastic waves in  Ω. So the idea of this section 

is to determine the most accurate surface distribution of equivalent stresses 𝛔̃𝐟 of the body force  𝐟, 
which approximates the most faithfully the particle displacement 𝐮 by a surface convolution with the 

same previous Green’s tensor taken at the part surface. The approach is summed up by the relation:   
 

 𝐮(𝐱) =∭ 𝐆(𝐱, 𝐱𝟎). 𝐟(𝐱𝟎)dΩ𝐱𝟎∈Ω
≈ ∬ 𝐆(𝐱, 𝐗𝟎). 𝛔̃

𝐟(𝐗𝟎)dΓ𝐗𝟎∈𝜕Ω
.  (14) 

 

The usual method for deriving equivalent surface stresses consists in a simple integration of the 

body forces over the depth (depicted by a variable w), which corresponds to the zeroth order force 

moment: 

 𝛔̃𝐟 = 𝐌𝐟
(0) = ∫ 𝐟(𝐱𝟎)K(w)dww

,  (15) 
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where K(w) denotes the local curvatures at a depth w of the part surface. But Thompson [14] pointed 

out in an ideal academic case (illustrated below in subsection 3.2.) that such a simple integration over 

the material depth predicts wrong stresses in case of magnetostrictive effects, mostly due to the free 

surface boundary condition previously discussed. This is the reason why Thompson [15], and more 

recently Rouge et al. [16], proposed a new model of equivalent surface stresses in elastic isotropic 

planar cases. It relies on a second order Taylor expansion in the direction normal to the part surface of 

the Green’s integral formulation of the elastic wave equation and takes into account the moments of a 

body force distribution up to the second order, the p-th order force moment being denoted by  𝐌𝐟
(p)

. In 

order to make this mathematical transformation applicable even broadly and so, consistently with the 

general magnetostrictive body force model presented in section 2, this approach has been recently 

extended to surfaces of complex shape and anisotropic elastic materials by means of tensorial and 

differential analyses [17]. The model takes into account the angular inspection frequency ω, the mass 

density ρ, the elastic stiffness tensor ℂ, the outgoing normal vector to the studied surface 𝐧, and can be 

reduced for the sake of clarity to the relation:  
 

 𝛔̃𝐟 = 𝛔̃𝐟 (𝐌𝐟
(p)
, ω2,  ρ, ℂ,  𝐧) ,   p = 0,  1,  2.  (16) 

 

Readers are referred to [17] for the detailed expression of this transformation. This mathematical 

model has also been numerically validated on bi-dimensional cases in order to demonstrate its 

accuracy gained in the particle displacement representation by a surface convolution. To maintain the 

process generality, this transformation method has been derived irrespective of nature of body forces 

considered. The only hypothesis is that these body forces satisfy a penetration depth much smaller 

than the acoustic wavelength 𝜆, which is of course verified in EMAT applications considering 

that  𝛿 ≪ 𝜆. The following subsections give 2D and 3D implementation examples of the 

magnetostrictive equivalent surface stresses distributions computed both by the usual method of 

simple integration (referenced as ‘Order 0 method’) and by the presented transformation model 

(referenced as ‘Order 2 method’).  

3.2.  2D application example of the model in ideal EMAT configuration 

We present here the ideal and analytical 2D case historically studied by Thompson [14], which gave 

him the idea of a model based on a second order expansion of the equivalent surface stresses. It 

consists of a meander line coil carrying a current Ieiωt at the desired ultrasonic frequency ω and 

positioned below a permanent magnet delivering a static uniform magnetic field 𝐇𝐒 = HS𝐞𝐱. Dynamic 

eddy currents and magnetic fields are set up at the surface of the ferromagnetic material (of relative 

magnetic permeability 𝜇𝑅). Besides the uniform character of the static field, this case is ideal because 

it further assumes an infinite y extent and a dynamic magnetic field 𝐇𝐃 only along the x direction 

(parallel to the static magnetic field). The EMAT configuration under study is illustrated in figure 5: 
 

As 

 

 

 

 

 

 

 

 

Figure 5. Thompson’s 2D EMAT configuration. 
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As shown by Thompson [15], when this transducer has an infinite y extent and both static and 

dynamic fields in the x direction, it produces a force distribution on a ferromagnetic material with a 

component in the z-direction of the form: 
 

 fz
MS(x0, z0) = μLφ(HS)[ik − δD(z0)]HDx(x0)e

−ikz0eiωt,  (17) 
 

where k = (1 − i) δ⁄ , (x0, z0) are the coordinates of a source point below the surface, and δD denotes 

a Dirac delta function at the part surface. In this ideal planar 2D case, it is worth noting that the model 

of equivalent magnetostrictive body force presented in section 2 reduces well to the magnetostrictive 

force given by Thompson, excepted for the Dirac delta function term. Indeed, this term is of non-

physical nature and only artificially added at the end of the force derivation process by Thompson in 

order to satisfy the otherwise violated stress-free boundary condition. As mentioned above, the model 

presented here also takes into account a free surface boundary condition, but in the very definition of 

the piezomagnetic stresses, and so, without adding any non-physical term in the magnetostrictive force 

definition. Then, the zeroth and second order moments of the magnetostrictive normal body force can 

be calculated as follows: 
 

 MMSz
(0)
(x0) = ∫ fz

MS(x0, z0)dz0
+∞

z0=0
= 0 (18a) 

 

 MMSz
(2)
(x0) = ∫ z0

2fz
MS(x0, z0)dz0

+∞

z0=0
= −

2μLφ(HS)

𝑘2
HDx(x0)e

iωt (18b) 

 

Therefore, while the zeroth order moment of the magnetostrictive normal force vanishes, its second 

order moment is finite and non-zero. Thompson [15] made two independent observations to explain 

the inconsistency of predicting null surface stresses of magnetostriction in this case, which inspired 

him the idea of developing the equivalent surface stresses model up to a second order. The model was 

historically only designed for an elastic isotropic planar half-space, which has been corrected by 

Rouge et al. [16], and recently extended to media of complex shape and numerically validated [17]. In 

this special analytic configuration, the whole second order expansion of equivalent surface stresses 

model reduces to: 
 

 σ̃z
fMS(x0) = MMSz

(0)
(x0) −

ρω2

2(λL+2μL)
MMSz
(2)
(x0) =

ρω2μLφ(HS)

(λL+2μL)k
2 HDx(x0)e

iωt (19) 

 

Besides the reasons given by Thompson in [15], this result has also been confirmed in [11] by 

considering the magnetostrictive interaction with ferromagnetic part as a pure inertial phenomenon, 

result that was numerically validated using finite-elements method. So, even if these equivalent 

surface stresses (being proportional to the ratio δ2 λ2⁄ ) are weak in this ideal case, this study gives 

credit to the whole methodology since the equivalent surface stresses prediction by a second order 

expansion is non-zero. Moreover, the main advantages of the two mathematical models presented here 

(meaning the equivalent magnetostrictive body force and its equivalent surface stresses expanded to a 

second order) rely on their ability to be applicable in three-dimensional ‘non-ideal’ cases (that is to say 

without considering any infinite dimension extent) and irrespective of the EMAT configuration. The 

models allow therefore studying the surface variations of the electromagnetic fields produced by more 

complex configurations of EMAT with finite-size aperture over the excited surface. Results of such 

three-dimensional computations are given in the following subsection. 

3.3.  3D computations of the equivalent surface stresses of magnetostriction 

As mentioned above, we show here some computation results for three-dimensional configurations of 

EMAT with a finite-size aperture over the excited surface of a ferromagnetic material. Results in this 

subsection - meaning the computation of the EMAT configuration, the definition of the material 

elastic and electromagnetic properties, the calculation of the electromagnetic fields induced, the 

magnetostrictive body force and finally its equivalent surface stresses - were obtained by 
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implementing the mathematical models presented in sections 2 and 3 in the Eddy Current Testing 

(ECT) modulus of the CIVA software platform [18] developed at CEA List and dedicated to 

simulation of various non-destructive evaluation techniques.  

 

The assumptions made on the magnetic behaviour of the tested material need to be clearly 

described here. We first assume that the material does not exhibit an intrinsic permanent 

magnetisation; the magnetisation is thus purely induced by the magnetic excitation field. The 

constitutive relations of the ferromagnetic material are given by: 

 

𝐌 = 𝛘(𝐇) . 𝐇    and    𝐁 =  μ0(𝐇 +𝐌) = 𝛍(𝐇) . 𝐇, 
  

where 𝛘 is the material magnetic susceptibility, and 𝛍 = μ0(𝟏 + 𝛘) = μ0𝛍𝐑 is the material magnetic 

permeability. Numerous theoretical models and experimental analyses are devoted to characterize 

these two key magnetic parameters, taking into account magnetic anisotropy, non-linear hysteretic 

behaviour, their dependencies on frequency, on temperature, or on applied stress. In order to make 

simpler our analysis on magnetostrictive effects, anhysteretic behaviour and magnetic isotropy are 

assumed in the present work and μ is modelled by a constant scalar parameter. This ideal case does not 

faithfully represent all possible experimental cases of magnetic behaviour; hysteretic behaviour and 

the dependency on frequency or on applied stress have a potential impact on the ultrasound generation 

processes involved in EMAT applications. Nevertheless, since a frequency domain simulation is 

performed with a weak coil injection current (below 1A) which presents a simple sinusoidal 

dependency with a frequency below 10 MHz, such assumptions constitute a good starting 

approximation to model soft ferromagnetic material behaviour focusing on the magnetostrictive model 

presented here. 

 

The simulation case under study in the present paper is a 3D EMAT composed of a cubic 

permanent magnet with an induction intensity of 1 T positioned over a rectangular spiral coil with an 

excitation current intensity of 1 mA at an excitation frequency 𝑓 = 5 MHz. The studied ferromagnetic 

material is a planar low-carbon steel with a relative magnetic permeability 𝜇𝑅 = 2 and an electric 

conductivity 𝜎 = 2 MS.m−1. It is further assumed elastically isotropic with the elastic quantities: 𝜌 =
7.8 g. cm−3, 𝑐𝑃 = 5900 m. s

−1, and 𝑐𝑆 = 3230 m. s
−1. The lift-off (in air) distance between the coil 

and the material is fixed at 0.2mm. An illustration of the studied EMAT configuration is given in 

figure 6: 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. 3D EMAT composed of a cubic permanent magnet and a rectangular spiral coil. 

 

Figure 7 displays the numerical simulation results using either a zeroth or a second order expansion 

of the equivalent surface stresses of the magnetostrictive equivalent body force induced by the EMAT 

in the detailed configuration, with a static magnetic induction 𝐁𝐒 respectively along the x-direction 

(top) and along the z-direction (bottom). 
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Figure 7. Norm of magnetostrictive equivalent surface stresses. Left: Order 0; Right: 

Order 2. Top: BS along x. Bottom: BS along z. 

 

As we can observe on the norm of the equivalent surface stresses of magnetostriction, the zeroth 

order expansion (meaning the zeroth order force moment) of equivalent surface stresses does not 

vanish anymore as in the above 2D case, since the x and y components of the electromagnetic fields 

and of the surface stresses coexist. We can conclude from these figures that the magnetostrictive 

phenomenon is much more precisely predicted using a second order expansion model of equivalent 

surface stresses, since the results between the two models are quite radically different. An explanation 

can be found in [11] in considering the magnetostriction phenomenon as a pure inertial force. In fact, 

the second order expansion model of the equivalent surface stresses accounts for the inertial effects 

brought by the elastic wave equation; this is actually why the model is sensitive to the square of the 

angular frequency ω2. The discussion confirms that magnetostriction effects are mostly due to inertial 

phenomenon, which can be modelled by the equivalent surface stress model detailed in section 3. 

The next section uses these magnetostrictive equivalent surface stresses as source terms to predict 

the longitudinal (L) and transversal (T) elastic waves generated by this configuration of EMAT into 

the mechanical part being tested. 

4.  Simulation of the ultrasonic field radiated by magnetostrictive effects induced by EMAT 

Finally, the modelling work done in the two previous sections allows taking benefits from well-

established semi-analytical models of ultrasonic field radiation to predict the elastic wave field 

radiated by magnetostrictive effects induced by an EMAT into a ferromagnetic part. The setup here is 

the one described in the above section, using the detailed EMAT with a static magnetic induction 𝐁𝐒 
along the z-direction. Figures 8-9 depict respectively the longitudinal and transversal waves radiated 

into planar elastically isotropic low-carbon steel at a frequency 𝑓 = 5 MHz. Results are given using 

either a zeroth or a second order expansion of the equivalent surface stresses of the magnetostrictive 

equivalent body force, and the relative differences ϵr (in percent) between the two transformation 

methods is represented according to the relation: 
 

 ϵr = |
uorder2−uorder0

max(uorder2 ,uorder0 )
|. (20) 
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Maximum ultrasonic amplitude of the particle displacement modulus (in arbitrary units) radiated 

into the material is shown for a set of calculation points in a plane perpendicular to the piece surface 

(first row) and in a plane parallel to the surface at a depth of 50 mm (second row), for longitudinal 

waves (figure 8) and for transversal wave (figure 9).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Map of the maximum L-wave amplitude induced by magnetostrictive effects. 1
st
 row: in a 

plane xz, 2
nd

 row; in a plane xy at a depth of 50 mm. 1
st
 column: computed at the 0-th order, 2

nd
 

column: computed at the 2
nd

 order, 3
rd

 column: relative difference. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Same as figure 8, but T-wave radiation. 

 

As expected in taking a look at the magnetostrictive equivalent surface stresses with either a zeroth 

or a second order expansion, ultrasonic fields radiated by these two transformation models are 

radically different, with a maximum relative error higher than 60 % at some observation points inside 

the low-carbon steel part.  
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It is also possible to numerically simulate all the transduction processes involved in the ultrasonic 

generation by an EMAT into a ferromagnetic part, that is to say, to simulate the Lorentz force, the 

magnetisation force and the magnetostriction effects. For example, figure 10 shows the fields at 50-

mm-depth of transversal ultrasonic wave generated by the EMAT above-described with a static 

magnetic induction 𝐁𝐒 along the x-direction with the body forces taken separately and all together: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. Maps of the maximum ultrasonic amplitude in a plane xy induced by all the EMAT source 

excitations. 1
st
 row: 0-th order, 2

nd
 row: 2

nd
 order, 3

rd
 row: relative difference. 1

st
 column: Lorentz 

force, 2
nd

 column: magnetisation force, 3
rd

 column: magnetostriction effect, 4
th
 column: total field. 

 

As we can see, in this particular configuration, all the transduction processes induced by the EMAT 

play a role in the ultrasonic wave it generates, included the magnetostriction effects, as the amplitudes 

of the fields they radiate are of the same order of magnitude. In this particular configuration, it may 

also be observed that both the Lorentz and the magnetisation contributions look very much the same 

over the computation zone. Actually, they show very similar variations of the modulus of the 

amplitude in this zone, but their signs are opposite so that they interfere destructively. This result is 

well-known for a tangential static field (for example in [2]). As a consequence, the remaining field is 

essentially related to magnetostrictive effects; this is easily seen by comparing the maps corresponding 

to the field radiated by magnetostriction with those corresponding to the sum of all contributions. 

5.  Discussions and conclusions 

The work presented herein provides a rigorous mathematical definition of an equivalent body force 

model for the magnetostrictive effects under a strong static magnetic field and a weak magnetoelastic 

coupling. This model relies on a tensorial formulation making it suitable to deal with arbitrary EMAT 

configuration and arbitrary geometry of the part. From the magnetostrictive equivalent body force, the 

derivation of the magnetostrictive equivalent surface stresses is obtained with accuracy by means of a 

second order expansion model, which has been numerically validated in a previous work [17]. Finally, 

these two mathematical models allow predicting the ultrasonic field radiated by magnetostrictive 

effects in ferromagnetic parts for general inspection cases in using well-established semi-analytical 

radiation models. Thus, all the source phenomena involved in three-dimensional configurations of 

EMAT and the ultrasonic field they radiate can be both efficiently and accurately predicted. 
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The prospects of this work consist in obtaining experimental validations of the magnetostriction 

model discussed here; in extending the model in the time domain in case of a strong dynamic magnetic 

field; and in investigating further the weak magnetoelastic coupling assumption. 
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