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Abstract. Recurrence Analysis (RA) is a promising and flexible tool to identify the behaviour
of nonlinear dynamical systems. The potentialities of such a technique are explored in the
present work, for the study of transitions to chaos of buoyant flow in enclosures. The case of a
hot cylindrical source centred in a square enclosure, is considered here, for which an extensive
database of results has been collected in recent years. For a specific value of the system aspect
ratio, a sequence of period doublings has been identified, leading to the onset of chaos. RA
is applied here to analyse the different flow regimes along the route to chaos. The qualitative
visual identification of patterns and the statistics given by the quantitative analysis suggest that
this kind of tool is well suited to the study of transitional flows in thermo-fluid dynamics.

1. Introduction
Transition to chaos of thermal convection flows in enclosures is one of the most intriguing topics
in the study of the onset of fluid turbulence [1]. Yet, the diversity of patterns and scenarios
that could arise as a consequence of the interplay between the temperature and velocity fields is
far from being completely unfolded. To this aim, different techniques can be employed for the
analysis of nonlinear behaviours encountered throughout transition.

This study is concerned with the 2D numerical analysis of the dynamics of an air-
filled isothermally cooled square cavity with a concentric horizontal cylindrical heat source,
investigated with respect to the governing parameters of the non-dimensional description of the
problem: the ratio between the cavity side length L and the minimum enclosure to cylinder
gap width H, A = L/H, and the Rayleigh number Ra, for a fixed value of the Prandtl number
Pr = 0.7. Recent results [2] showed that at least two distinct types of dynamics can be observed:
(i) a thermal plume arising from the cylindrical source for low A-values (A ≤ 3.3), and (ii)
Rayleigh-Bénard-like cellular structures above the heat source for higher A-values (A ≥ 5).

For the case A = 2.5 a thorough description was reported in [3–5] of the period-doubling
route to chaos that the thermal plume undergoes for increasing Ra. Moreover, this bifurcation
path was shown to be determined by the nonlinear interplay of two fundamental modes of the
thermal fluid-dynamic system.
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Figure 1. Schematic view of the system under consideration.

Substantially different is the mechanism involved for the case of the Rayleigh-Bénard cellular
patterns that characterise the flow for A = 5. In fact, in this case the growth of Ra causes the
progressive winding of the trajectory on an attractor resembling the features of a French horn,
typical of the blue-sky catastrophe driving the transition from periodic dynamics to chaos in the
Shilnikov’s scenario [6]. Due to the complexity of this scenario and of the observed attractor,
more sophisticated tools are required to identify unequivocally the system behaviour. With this
respect, promising seems the adoption of the Recurrence Analysis (RA) [7].

With this purpose, the present study is devoted to test the tools made available by RA
through their preliminary application to the description of the recurrent patterns observed in
the dynamics of the swaying thermal plume for the case of sufficiently wide gap, at A = 2.5,
so as to take advantage of the high level of refinement already reached in previous studies. In
particular, the low order dynamics arising from the period-doubling cascade undergone by the
basic periodic limit cycle will be followed by means of the Recurrence Plot of the intermediate
regime solutions encountered on the way to chaos.

2. Problem statement
The problem is stated in terms of the incompressible Navier-Stokes formulation. The Oberbeck-
Boussinesq approximation is enforced, all the fluid properties being consistently assumed as
constant, apart from density in the buoyancy term.

The governing equations are tackled in their non-dimensional form. The gap between the top
of the cylinder and the upper cavity wall is indicated in [8] as the most suitable scale length,
Href = H. In fact, it reduces the dependence of the solution ranges on the aspect ratio, in
particular, for what concerns the heat transfer rate and the first transitions between different
regimes. Moreover, the region above the cylinder is subject to the maximum inverse thermal
gradient, i.e. to the highest buoyancy force acting on the fluid system, and this is again related
to the reference length H.

Temperature is non-dimensionalized according to a reference temperature Tref , i.e. the
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temperature difference between the cylinder and the cavity walls (Tref = TS − TW ), and the
following velocity scale is chosen:

Uref =
√
gβTrefHref (1)

where g denotes the gravitational acceleration and β is the thermal expansion coefficient of the
fluid. Coherently, time is made dimensionless by choosing a reference time scale tref = H/Uref .
The continuity, momentum, and energy equations are then given the following form:

∇ · u = 0 (2)

∂u

∂t
+ u · ∇u = −∇p+

Pr1/2

Ra1/2
∇2u + T ĝ (3)

∂T

∂t
+ u · ∇T =

1

(RaPr)1/2
∇2T (4)

where t, u, p and T represent the dimensionless time, velocity vector, pressure and temperature,
respectively, and ĝ is the gravity unit vector. The Rayleigh and Prandtl numbers are defined
as:

Ra =
gβTrefH

3
ref

να
(5)

Pr = ν/α (6)

where ν and α represent the momentum and thermal diffusivity, respectively. A constant value
Pr = 0.7 is assumed for air. With reference to figure 1, the following non-dimensional boundary
conditions are imposed:

T = 0, u = 0 (7)

at the enclosure walls, and:
T = 1, u = 0 (8)

on the cylinder surface.

3. Numerical methods
The numerical technique adopted is based on a Finite Volume implementation of a second
order Projection Method, following [9]. Time-discretizations of the conservation equations are
performed according to a three-level scheme, which is fully implicit for the diffusive terms, and
explicit Adams-Bashforth for the advective terms. Such a practice is second order accurate in
time.

Spatial derivatives are approximated with second order central differences on staggered, non-
uniform Cartesian grids. A direct resolution of the discrete momentum and energy equations
at each time-step is made possible by means of Approximate Factorization, while the Poisson
problem associated with the pressure-velocity coupling [9] is solved through a fast Poisson solver,
based on Matrix Decomposition.

The 2D modelling of arbitrarily irregular boundaries on Cartesian grids is achieved thanks to
the original scheme developed in [10]. The technique involves a local modification of the 5-point
computational stencil where boundary segments intersect the stencil arms. The variables on the
modified stencil are mapped on the global grid, by means of a linear operator determined by
geometrical features and boundary conditions. The overall accuracy of the method is virtually
preserved, as well as the computational efficiency of the Cartesian approach.
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Details on the grid size, time step choice, initial conditions, are outlined in detail in [3], while
a grid independency test for a periodic flow is reported in [8].

For the purposes of recurrence analyses, the time histories of dimensionless temperature T
sampled at location N (as reported in figure 1) were considered. The simulated time series,
originally collected with a fixed time step size ∆t = 8.25 × 10−3, were resampled at a larger
interval ∆t = 3.3 × 10−2 in order to decrease the computational effort required by recurrence
quantification.

4. Recurrence Analysis
Previous analyses of the simulated dynamics have been devoted to the topological description
of the attractors in the state space spanned by the system variables, namely the dimensionless
temperature and the horizontal and vertical components of the dimensionless velocity, sampled
at specified points of the domain. The present study instead proposes a different approach
aiming at characterising the observed recurrent behaviour of the state variables, which is a
fundamental and typical property of nonlinear systems. In particular, the sequence of bifurcating
attracting solutions arising for increasing Rayleigh number will be distinguished on the basis of
the differences between the patterns in their recurrence plots.

The construction of the recurrence plot (RP) allows for the observation of the existence of
recurrent states xi of the attractor representation in an original m-dimensional phase space.
The RP is a 2D representation space, with time spanning both axes, defined as [7]:

Ri,j = Θ (ε− ‖xi − xj‖) , xi,xj ∈ Rm, i, j = 1, . . . , N (9)

where N is the number of considered states xi, ε is a threshold distance defining the transvers
dimension of the cylinder centred on the trajectory, ‖ · ‖ is the norm operator and Θ(·) is the
Heaviside function. This corresponds to representing the recurrence of states at two different
time i and j with a black dot in the recurrence plot. The RP is symmetric with respect to the
main diagonal, which corresponds to the line of identity (LOI). The application of statistical
analyses of the distribution of points in the RP offers a variety of tools for the characterisation
of the dynamics of the system under consideration. These tools are collectively addressed as
recurrence quantification analysis (RQA) and will be synthetically described in the following.

The choice of the embedding dimension does not usually play a fundamental role and, hence,
especially if the RP is used as the basis for RQA, it is often preferable simply to set it at 1, i.e. no
embedding is required [11]. Similarly, also the time delay for the embedding is not determinant
and, therefore, it can also be set at 1 [12]. It is worth observing that both the embedding
dimension and the time delay are critical parameters in the application of traditional nonlinear
tools based on attractor characterisation on phase space and, hence the analysis of the time
series by means of RPs and RQA appears much simpler in this regard. Accordingly, in this
study, both the embedding dimension m and the time delay τ have been set to 1.

Far more relevant is the choice of the threshold radius ε, both for the determination of the
RP and for the application of the RQA tools; in fact, if the threshold is too small, only a limited
number of recurrent state can be detected, whereas if it is too large false recurrence and even
consecutive points of a trajectory will populate the RP. Various criteria have been proposed for
an appropriate choice [7, 12, 13]. In particular, Webber and Zbilut [12] suggest to choose the
radius threshold looking for a scaling region in the recurrence point density (RR).

Different topologies arise depending on the distribution of the black points in the RPs and, in
fact, RPs allow for the identification of transitions and interrelations within the system dynamics.
In fact, the topology of the RPs has been related [7] to the system dynamics. In particular, for
the aims of the present study it is of interest the identification either of periodic behaviours,
through the observation of diagonal lines in the RP, or of deterministic chaotic behaviours, which
manifest themselves with isolated points close to periodic diagonal lines, as a consequence of the
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existence of unstable periodic orbits. Also of interest is the observation of horizontal or vertical
lines in the RP, as these are due to laminar states, i.e. states for which no appreciable change in
the trajectory occurs within a certain time window. Beyond the interest of the present study, the
study of Marwan et al. [7] also reports a detailed description of the RP topology of other classes
of dynamical states, such as nonstationary, intermittent or strongly fluctuating phenomena.

As previously mentioned, the recurrence quantification analysis, RQA, represents a set of
statistical tools for the synthetic description of a RP or for the comparison of RPs characteristic
of different conditions [7, 12]. The following section reports a brief synthesis of these tools
and their possible relation with the dynamics invariants typically used for the characterisation
of nonlinear dynamics in phase space. The analytical definition of the reported parameters is
omitted for brevity and can be found in the reported literature.

The parameter known as recurrence rate, RR, is a measure of the tendency of a system to
return nearby to a previous state. RR is calculated as the percentage of recurrence points in the
recurrence plot and, therefore, it depends on the value of the threshold ε. Though nonlinear, the
dependence of RR on ε usually presents a linearly scaling region, within which it is appropriate
to search for an optimal value of the threshold.

The determinism DET is the statistical quantification of the predictability of a system and,
in fact, is defined as the ratio of the recurrence points aligned along diagonals parallel to the
main diagonal, LOI, to the entire set of recurrent points.

In a similar fashion, the parameter laminarity LAM evaluate the number of points lying on
vertical (or horizontal) lines, which are due to the permanence of the system in a given dynamical
state for a time corresponding to the number of aligned points in the RP.

The mean and values of the lengths of diagonal lines and of vertical lines are respectively
expressed by L, predictability time of the system, and TT , trapping time, i.e. the mean time
scale (in terms of sampling intervals) for which small changes are observed in time series. Another
relevant parameter is the divergence DIV , i.e. the inverse of the maximum length of diagonal
lines in the plot.

The mean period of the dynamics of the system has been related in [7, 14] with the parameter
defined as recurrence of the first kind, T1, calculated as the average of empty space between the
points of the RP. Taking this value as a reference, it is possible to calculate the probability
distributions of periods t separating the diagonal lines and, also, the recurrence period density
entropy, ENTRt. Both the latter parameters, T1 and ENTRt, might be of particular interest
when the system may express a variety of periodic behaviours, such as when bifurcations as
period doubling and intermittency are expected.

5. Results and discussion
This section reports the results of the analyses performed on the time series of the temperature at
point N in the scheme in figure 1, for a set of simulations that have been chosen as representative
of the solutions found for increasing values of the Rayleigh number in the period doubling route
to chaos. The cases considered are summarized in Table 1. Parenthetically, for the sake of
comparisons, such solutions are the same discussed in [3–5].

In accordance with the methodological guidelines described in the previous section, the
embedding dimension for the reconstruction of the phase space has been set to 1 (i.e. no
embedding has been considered). The choice of the radius threshold, ε, has been performed
on the basis of the sensitivity analysis on parameters RR and DET for the solution P32 at
Ra = 1.94975× 105. figure 2 (a) and (b) reports the values of the two parameters for increasing
ε; both show the existence of a scaling region and allow to justify the choice of an optimal
threshold corresponding to ε = 0.03.

Figure 3 (a)-(d) and figure 4 report the temperature time series and the RPs for the cases
P1, QP , P2, P4 and P8. The RPs for the higher order periodic solutions, up to P128, have been
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(a) (b)

Figure 2. Plots of recurrence rate RR and determinism DET as a function of threshold ε
for Ra = 1.94975 × 105 (P32 regime). Statistics are computed on a sequence of 50000 samples
(∆t = 3.3 × 10−2) of the normalized temperature series, with embedding dimension and time
delay set to m = 1 and τ = 1, respectively. The chosen threshold value ε = 0.03 is highlighted
in the plots.

calculated but are not reported for the sake of brevity. For each of the periodic solutions in
figure 3 (a), (c), (d) and figure 4, the pattern that corresponds to a complete limit cycle in phase
space has been encircled and, in fact, it is possible to observe its identical repetition along the
main diagonal of the RP.

Such a behaviour cannot be observed in figure 3 (b), as a consequence of the quasiperiodic
dynamics of the time series, giving rise to a trajectory in phase space that continuously whirls
on a T2 torus but never closes on it. Moreover, it is possible to observe that the patterns in
the RP of the quasiperiodic case can be considered as originated by a sort of weak modulation
of the basic sub-patterns that correspond to the two modes of the P2 solution; in fact, such
modulation ends as soon as the latter two modes, incommensurate in the quasiperiodic regime,
lock together in the P2 limit cycle. More details corroborating this observation are reported in
[3–5].

Table 1. Ra-values and corresponding flow regimes analysed in the present work.

flow regime Ra× 10−5

periodic P1 1.71
quasiperiodic QP 1.76875

periodic P2 1.8
periodic P4 1.93645
periodic P8 1.945
periodic P16 1.94925
periodic P32 1.94975
periodic P64 1.95
periodic P128 1.95008

incipient chaos CH1 1.955
fully-developed chaos CH2 2
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(a) (b)

(c) (d)

Figure 3. Normalized temperature time series and corresponding recurrence plot for regimes
(a) P1, (b) QP , (c) P2, (d) P4. Plots have been obtained on a sequence of 5000 samples
(∆t = 3.3× 10−2) with embedding dimension m = 1, time delay τ = 1 and threshold ε = 0.03.
Recurrent patterns for each regime are framed in red, except for plot (b), where two analogous
but slightly different patterns are highlighted with red and blue frames.
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(a) (b)

Figure 4. Normalized temperature time series and corresponding recurrence plot (a) for regime
P8, alongside with a zoomed view (b) of the recurrent pattern. The plot has been obtained on
a sequence of 5000 samples (∆t = 3.3 × 10−2) with embedding dimension m = 1, time delay
τ = 1 and threshold ε = 0.03.

(a) (b)

Figure 5. Normalized temperature time series and corresponding recurrence plot for regimes (a)
CH1 and (b) CH2. The plots have been obtained on a sequence of 5000 samples (∆t = 3.3×10−2)
with embedding dimension m = 1, time delay τ = 1 and threshold ε = 0.03.
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Figure 6. Plots of divergence DIV against determinism DET for all the regimes considered
here. Statistics are computed on sequences of 50000 samples (∆t = 3.3×10−2) of the normalized
temperature series, with embedding dimension and time delay set to m = 1 and τ = 1, and with
a threshold value ε = 0.03.

It is worth observing that, as a consequence of the period doubling from P1 to P2, the first
single pattern in figure 3 (a) is doubled in a couple of different sub-patterns in figure 3 (c); the
same observation can be drawn for the following period doublings, from P2 to P4 and from P4

to P8, each corresponding to a duplication in the high order dynamics of the basic sub-patterns
observable in the low order one, with progressively smaller differences among them. Such a
behaviour has been identically observed also for the higher order period doublings, not reported
here. This progression clearly determines a rapid growth of the complexity of the RP global
structure and, as it is typical in a period doubling cascade, ends with the appearance of chaotic
dynamics.

In fact, figure 5 (a) and (b), report the RPs for two chaotic solutions. In particular, they
are representative of the case of incipient chaos at Ra = 1.955× 105 and of developed chaos at
Ra = 2×105, respectively. From the observation of these plots, it is easy to identify the growing
influence of chaotic mixing on the complexity of the RP structure, that can be recognised in the
higher variety and in the lack of repeatability of the basic patterns.

Reported discussion on the topology of the RPs show that recurrence analysis represents a
powerful tool for the characterisation of bifurcation path such as the period doubling cascade
discussed in the present study. Therefore, the interest of the study has been extended to the
extraction of the RQA statistical parameters discussed in the previous section.

All of the parameters previously mentioned have been evaluated for the entire set of
simulations along the period doubling cascade. From their preliminary analysis, it has emerged
that not all of the parameters are useful for the dynamics under consideration in the present
study. For this reason, and for the sake of conciseness, a different approach has been chosen
here. In particular, each of the analysed simulations has been described by means of the couple
of parameters (DET,DIV ), i.e. those showing the highest sensitivity, and are reported in the
parameter space in figure 6.

The separation in the chosen parameter space between periodic and chaotic solutions is
evident; this is true both for the case CH1, corresponding to incipient chaos, and, markedly
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more, for the case CH2. These results demonstrate the capabilities and flexibility of RPs and of
RQA in the characterisation of transitional phenomena in nonlinear dynamics and will be used
in the extension of the present study to the analysis of the more complex dynamics observed in
[2] for a cavity aspect ratio A = 5.

6. Concluding remarks
The suitability and applicability of Recurrence Analysis to the identification of successive flow
bifurcations of a natural convection flow from an enclosed horizontal cylinder was investigated
here. In the case under consideration, the scenario leading to chaos consists in a sequence
of period-doubling bifurcations, preceeded by a window of quasiperiodic flow. The analyses
benefitted of the existence of an extensive database of numerical simulations already described
and discussed in recent works.

First, an optimal value of the threshold ε for the identification of recurrence points was sought
for and identified on the basis of a single case. Successively, recurrence plots were carried out
for a set of simulated time series, corresponding to the different regimes encountered throughout
the route to chaos. A clear distinction between the regimes could be easily assessed by visual
inspection of the plots. The features of period-doublings were clearly displayed, as well as the
mixing characteristics of deterministic chaos.

Secondly, recurrence quantification analysis tools revealed that some of the most relevant
statistics computed on recurrence plots allowed for a rather simple discrimination between
periodic and chaotic solutions.

It is concluded that recurrence analysis is indeed a powerful tool for the characterisation
of transitional dynamics in buoyancy-induced flows. Further application of the technique on
more complex scenarios occurring on the same case (but for different values of the system main
parameters) is thus envisaged.
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