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Abstract. In this paper, we solve a one dimensional blood flow model in human artery. This 

model is of a non-linear hyperbolic partial differential equation system which can generate 

either continuous or discontinuous solution. We use the Lax–Friedrichs finite volume method 

to solve this model. Particularly, we investigate how a pulse propagates in human artery. For 

this simulation, we give a single sine wave with a small time period as an impluse input on the 

left boundary. The finite volume method is successful in simulating how the pulse propagates 

in the artery. It detects the positions of the pulse for the whole time period. 

1. Introduction 

Blood is one of body components which has important functions. One of blood functions is to 

distribute the nutritions to all human body tissues. In some cases, blood flow may be hindered because 

of some problems, such as plugging and artery cavity stiffening [1-2]. It is a dangerous condition that 

must be overcome. In this case, medical treatment can affect the blood flow pattern. Blood flow in 

human artery can be represented in a mathematical model. We can investigate blood flow patterns 

from the solution of its model [3-5]. Numerical methods are considered, as they are powerful [6-8] to 

solve mathematical models. 

In this paper, our focusses are to find and simulate numerical solution of the one dimensional blood 

flow model in human artery. There are a number of methods which can be used to solve this model, 

but we use the Lax–Friedrichs finite volume method [9-12] because of its simplicity. Moreover, finite 

volume methods can be used to find either continuous or discontinuous solution [13-14]. 

The paper is organised as follows. Section 2 gives the problem that we want to solve. Research 

method is presented in Section 3. Numerical results are provided in Section 4. Conclusion is drawn in 

Section 5. 

2. Problem formulation 

In this section, we describe the problem of blood flow in human artery, which we want to solve.  

We consider a straight cylindrical tube with circular cross section and z coordinate is the axis of 

cylinder (see Figure 1). The one dimensional blood flow model for human artery [2] is ���� + ���� = 0 , (1) ���� + ��� �∝ �
� � + �� ���� + �� �� = 0 , (2) 
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for � ∈ �0, �� and � > 0, where �, �, and � are the cross section area of artery, the blood discharge, 

and the blood pressure, respectively. In addition, ∝ is the velocity function in every cross section 

artery which is assumed as a constant (in this paper we set its value equals to one), � is the density of 

blood, �� is the coefficient which relates to the blood viscosity, � is the space variable, and � is the 

time variable.  

 
Figure 1. Ilustration of human artery. 

 

In this model, there are three dependent variables (�, �, dan �) and two equations. In order to have 

two equations with two unknowns, we define a relation that links the blood pressure with the cross 

section area of artery � = ���� + ��√� − �� ! . (3) 

Here �#$% is the external pressure and �  is the artery cross section area at initial time � = 0. In this 

paper, ���� is assumed to be zero and �  is constant. Furthermore, � is a parameter relating to the 

artery wall elastic properties: 

���� = 4√'ℎ )���3�  , (4) 

where )��� is the elastic Young’s modulus. 

3. Numerical method 

In this section, we explain the finite volume method for solving blood flow model (1)-(2). We use the 

flux formulation of Lax–Friedrichs [9]. 

To find numerical solutions of this blood flow model, let us consider the space domain 

discretisation (as shown in Figure 2) where ∆� = �,-./
 − �,0./
 or ∆� = �, − �,0., and the time 

domain discretisation �1 = 2 ∆� for integers 2. 

 �,034 �,054 �,-54 �,-34 

 �,0. �, �,-. 
Figure 2. Ilustration of space domain discretisation. 

 

From equation (3), we obtain ���� = ��� 6��√� − �� !7  

                     = 8�8� �54 + �2 �054 ���� − 8�8� � 
54  .  

If we multiply both sides of the previous equation with �/� , we get 
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�� ���� = 8�8� �34� + �2 �54� ���� − �� 8�8� � 
54  . (5) 

We note that � is a function of �, and � is a function of � and �. Therefore, we have ��� :��343� ; + �� 8�8� <23 √� − �� = = 8�8� �34� + �2 �54� ���� − �� 8�8� � 
54  . (6) 

From equations (5) and (6), we get �� ���� = ��� :��343� ; + �� 8�8� <23 √� − �� =. (7) 

Based on equation (7), equation (2) can be rewritten as ���� + ��� ��
� + �3� �34� = −�� �� + �� 8�8� <�� − 23 √�=. (8) 

From the above derivation, blood flow model (1)-(2) are balance laws in the form of >̅% + @̅ �>̅�A = B̅�>̅� (9) 

where the conserved quantities, flux functions, and source terms are 

>̅ = C��D, @̅�>̅� = E �F4
G + HIJ �34K, and B̅�>̅� = L 0−�� FG + GJ MHMA 6�� − 
I √�7N 

respectively. 

Using the finite volume framework, we assume that OP,1 ≈ >̅��,, �1�, @̅�OP,1� ≈ @̅�>̅��,, �1�!, and R,̅1 ≈ B̅�>̅��,, �1��. We define the following vectors 

OP,1 = C�,1�,1D,  @̅�OP,1� = S �,1�FTU!4
GTU + HIJ ��,1�34V  and  R,̅1 = E 0−�� FTUGTU + GTUJ MHMA 6�� − 
I ��,17K. 

The fully discrete finite volume method [9] to get the numerical solution to balance laws (9) is OP,1-. = OP,1 − ∆�∆� <WP,-54
1 − WP,054

1 = + ∆� R,̅1 , (10) 

with the definition of the Lax–Friedrichs flux  

WP,-54
1 = @̅�OP,-.1 � + @̅�OP,1�2 − ∆�2∆� �OP,-.1 − OP,1� , (11) 

and 

WP,054
1 = @̅�OP,1� + @̅�OP,0.1 �2 − ∆�2∆� �OP,1 − OP,0.1 � . (12) 

From the finite volume scheme (10)-(12), we get the numerical scheme for blood flow model (1)-

(2) as follows. The numerical scheme for equation (1) is �,1-. = �,1 − ∆�∆� <W,-54
1 − W,054

1 = , (13) 

with the definition of Lax–Friedrichs fluxes W,-54
1 = 12 ��,-.1 + �,1� − ∆�2∆� ��,-.1 − �,1� , (14) 

and W,054
1 = 12 ��,1 + �,0.1 � − ∆�2∆� ��,1 − �,0.1 � . (15) 

In addition, the numerical scheme for equation (2) is 

�,1-. = �,1 − ∆�∆� <ℱ,-54
1 − ℱ,054

1 = + ∆� Z−�� �,1�,1 + �,1� 8�8� <�� − 23 [�,1=\ , (16) 
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with the definition of Lax–Friedrichs flux

ℱ,-54
1 = 12 L��,-.1 �
�,-.1 + �3�

and 

ℱ,054
1 = 12 L��,1�
�,1 + �3� �

We are now ready to present our results of

4. Numerical simulation 

In this section, we investigate how a pu

boundary conditions are taken as follow.

 

4.1. Numerical settings 

For this numerical simulation, we take 

of numerical simulations. We set 

of ) and � do not change for all∆� = 0.005, and ∆� = 0.002∆�
condition, the method will be stable.

 

Figure 3. A l

 

We investigate at the three monitoring points (

points P, M, and D are proximal, medium, and distal point

nearest point from the heart and point 

of coefficients that we use in all simulations

 

Table 1.

Coefficient

Blood density 

Young’s modulus 

Wall artery thickness 

Initial cross section area 

Blood viscosity

 

4.2. Initial and boundary conditions

Given the initial values of ���
boundary values for this simulation

in the form of a single sine wave with  a small time period�

� = 0 

^ � = 0 

 

Friedrichs fluxes 

� ��,-.1 �34 + ��,1�
�,1 + �3� ��,1�34N − ∆�2∆� ��,-.1 − �
��,1�34 + ��,0.1 �
�,0.1 + �3� ��,0.1 �34N − ∆�2∆� ��,1 − �,01

We are now ready to present our results of numerical simulations of the blood flow model.

In this section, we investigate how a pulse propagates in human artery. Numerical settings, initial and 

boundary conditions are taken as follow. 

, we take � = 15 cm and � ∈ _0,0.035` second. Figure

We set ) as a constant, so it implies � is a constant. It means that the value 

all � ∈ �0, ��. So, the value of 8�/8� equals to zero. And then�. As long as ∆� satisfies the Courant–Friedrichs

will be stable.  

 

A layout of human artery for numerical simulation.

investigate at the three monitoring points (P, M, and D) for the pressure variation

are proximal, medium, and distal points, respectively. Consider

nearest point from the heart and point a is the farthest point from the heart. Table 1 shows the value

use in all simulations. 

Table 1. Coefficients value for numerical simulation. 

Coefficient Value 

Blood density � 1 g/ cm
3 

Young’s modulus )  3x10
6
 dyne/ cm

2
 

Wall artery thickness ℎ 0.05 cm 

Initial cross section area �  π0.5
2
 cm

2
 

Blood viscosity �� 10
−8

 dyne s/ cm
2
 

conditions ��, 0� = � , ���, 0� = 0, and ���, 0� = 0, for every 

simulation is taken as follows. At the left boundary, we give

wave with  a small time period: ��0, �� = 10I ∙ sin < '�0.0025= . 

 .25� 

f � = 0.5� 

 

 

a � = 0.75� 

 

 h 

�,1� , (17) 

0.� . (18) 

numerical simulations of the blood flow model. 

artery. Numerical settings, initial and 

ure 3 shows the layout 

is a constant. It means that the value 

equals to zero. And then, we take  

Friedrichs–Lewy (CFL)’s 

 

. 

) for the pressure variations, where 

Consider that point P is the 

Table 1 shows the values 

, for every � ∈ �0,15�. The 

give an impluse input  

(19) 

� = � 
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For the left boundary value of � and �, let us consider the characteristic variables of model (1)-(2) 

which has been explained in [2]: i. and i
 are given by 

i
 = �� − 2j2�� �5k , (20) 

i. = i
 + 4j2� �[� + ��� � , (21) 

� = <��=
 �i. − i
�l4m  , (22) 

� = � i. + i
2  . (23) 

We set i
 as a constant and equals to its initial value. And the last, for each right boundary value of �, � and � equals to the corresponding value of the nearest neighbour in the domain. 

 

4.3. Numerical results 

In this subsection, we summarise our numerical results. 

  
Figure 4. Graphics of the artery cross 

section area with respect to time. 
 

Figure 5. Graphics of the blood presure 

with respect to time. 
 

  
Figure 6. Graphics of the artery cross 

section area with respect to space. 

Figure 7. Graphics of the blood pressure 

with respect to space. 
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For this numerical simulation, where the elastic Young’s modulus is constant, the blood pressure is 

directly propotional with the artery cross section area (see Figure 4 and Figure 6). Furthermore, the 

blood pressure amplitude decreases with respect to time and space (see Figure 5 and Figure 7). We 

infer that the decrease is influenced by the dissipation of the numerical method. We note that as the 

cell width is taken smaller, the amplitude can be maintained almost the same as the original one, as 

long as the solution is continuous. 

 

5. Conclusion 
Based on the numerical results, the form of pulse does not change but the amplitude decreases with 

respect to time and space due to numerical dissipation. The dissipation can be small if the numerical 

cell width is small. This research is limited to problems solved using the first order Lax–Friedrichs 

finite volume method. Future work could extend the method to higher order ones. 

Acknowledgment 
This work was financially supported by Sanata Dharma University. The financial support is gratefully 

acknowledged by both authors. 

References 
[1] Acosta A, Puelz C, Penny D J and Rusin C G 2015 Numerical method of characteristics for one-dimensional blood 

flow Journal of Computational Physics 294 96 

[2] Formaggia L, Nobile F and Quarteroni A 2002 A one dimensional model for blood flow: application to vascular 

prosthesis, in Babuška I, et al. (eds.), Mathematical Modeling and Numerical Simulation in Continuum 

Mechanics pp. 137-153 (Springer, Berlin) 

[3] Montecinos G I, Müller L O and Toro E F 2014 Hyperbolic reformulation of a 1D viscoelastic blood flow model and 

ADER finite volume schemes Journal of Computational Physics 266 101 

[4] Müller L O and Toro E F 2013 Well-balanced high-order solver for blood flow in networks of vessels with variable 

properties International Journal for Numerical Methods in Biomedical Engineering 29 1388 

[5] Watanabe S M, Blanco P J, and Feijóo R A 2013 Mathematical model of blood flow in an anatomically detailed 

arterial network of the arm ESAIM: M2AN 47 961 

[6] Malik O U, Hilderman R J, Hamilton H J and Dosselmann R 2016 Retail price time series imputation International 

Journal of Business Intelligence and Data Mining 11 49 

[7] Lu Z, Yan J and Wang X 2015 Using grouping strategy and pattern discovery for delta extraction in a limited 

collaborative environment International Journal of Business Intelligence and Data Mining 10 378 

[8] Nesticò A and Pipolo O 2015 A protocol for sustainable building interventions: financial analysis and environmental 

effects International Journal of Business Intelligence and Data Mining 10 199 

[9] LeVeque R J 2002 Finite Volume Methods for Hyperbolic Problems (Cambridge University Press, Cambridge) 

[10] Mungkasi S 2016 An adaptive mesh finite volume method for the Euler equations of gas dynamics AIP Conference 

Proceedings 1737 040002 

[11] Mungkasi S and Ningrum G I J 2016 Numerical solution to the linear acoustics equations AIP Conference 

Proceedings 1746 020056 

[12] Mungkasi S and Sari I P 2016 Numerical solution to the shallow water equations using explicit and implicit schemes 

AIP Conference Proceedings 1746 020064 

[13] Mungkasi S 2016 Adaptive finite volume method for the shallow water equations on triangular grids Advances in 

Mathematical Physics 2016 7528625 

[14] Supriyadi B and Mungkasi S 2016 Finite volume numerical solvers for non-linear elasticity in heterogeneous media 

International Journal for Multiscale Computational Engineering 14 479 

ICSAS                                                                                                                                                   IOP Publishing
IOP Conf. Series: Journal of Physics: Conf. Series 795 (2017) 012042          doi:10.1088/1742-6596/795/1/012042

6


