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Abstract. Three methods to solve initial value problems are considered. The methods are the 
first order Euler's, second order Heun's, and rational block methods. The Euler's and Heun's 
methods are of the Runge-Kutta type. Numerical results show that the rational block method is 
more robust than Runge-Kutta type methods in solving initial value problems.  

1.  Introduction 
Mathematical models are very useful to solve real problems [1-4]. A class of mathematical models is 
ordinary differential equation (ODE). To solve ODEs in practice, we must have an initial condition 
and they form an initial value problem. There are a number of methods to solve initial value problems, 
such as Runge-Kutta methods and rational block methods.  

In this paper, we solve initial value problems using the first order Runge-Kutta (Euler's) method, 
second order Runge-Kutta (Heun's) method and rational block method. Runge-Kutta methods are 
standard in the fields of numerical ODEs. The rational block method is a combination of rational 
methods [5]. In this work, we test the performance of the rational block method in comparison to 
Runge-Kutta methods. We note that the rational block method calculates approximate values of 
solution at two points in each iteration [6-9]. Runge-Kutta methods calculate approximate values of 
solution at one point in each iteration. A robust ODE solver is needed in the process of finding a more 
difficult problem, such as solving partial differential equations numerically [10-14]. 

The paper is structured as follows. We describe the problem formulation of the rational block 
method in Section 2. All three numerical methods to be tested are written in Section 3. Numerical 
results are presented in Section 4. The paper is concluded with some remarks in Section 5. 
 
2.  Problem formulation 
We recall the general formulation of initial value problems using the rational block method [6-8].  

Given the initial value problem: 
  

����� = ���, ��,   ��
� = � (1) 
  
where ���, ��: ℝ × ℝ� → ℝ� and the initial value problem (1) has a unique solution. In this paper 
we want to solve the initial value problem from the starting point to the final point. Therefore, we have 
to form the interval of integration. Let � ∈ ���, ��� and the interval ���, ��� is descretised for the 
numerical integration as ���, ��, … ��, ����, … , ��� ⊂ ℝ .  
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���� = 
�  
�����
#�  ����

 , (7) 

  

�� = 
�#� − 
�
�#�  ����  , (8) 

  

��� = −2 �
�#� − 
��
�#�  ���*  . (9) 

  
Equations (6)-(9) contain three unknown coefficients 
�,  
� dan #�. Eliminating these three unknown 
coefficients, we have 
  

���� = ��  2 $�����

2 �� − $���  . (10) 

  
Equation (10) is a one-step second order rational method (see Lambert [5] for details). This method is 
a formula to calculate the approximate value ���� by using previous information at point ���, ���. 

Furthermore, to calculate the approximate value ����, we once again assume that the approximate 
solution to problem (1) is locally given in the interval ���, ����� by the rational approximant (5). In 
the calculation process, this rational approximant in equation (5) passes through points ���, ���,
�����, ����� and �����, �����. The derivative values at �� and ���� are given by ��� = ����, ��� and 
����� = ������, �����. Therefore, five equations must be satisfied as follows: 
  

�� = 
�  
���
#�  ��

 (11) 

  

���� = 
�  
�����
#�  ����

 (12) 

  

���� = 
�  
�����
#�  ����

 (13) 

  

�� = 
�#� − 
�
�#�  ���� (14) 

  

���� = 
�#� − 
�
�#�  ������ (15) 

  
We notice that equations (11)-(15) contain four unknown coefficients 
�,  
�, #� and ��. Eliminating 
these four unknown coefficients, we have 
  

���� = ����  $��������� − ���
2 ����� − ��� − $����

 . (16) 

  
Equation (16) is a two-step third order rational method (see Lambert [5] for details). This method is a 
formula to calculate the approximate value ���� by using previous information at points ���, ��� and 
�����, �����. 

The calculation of the rational block method is based on the rational approximant (5). By the 
elimination of unknown coefficients, we have formulas (10) and (16). These formulas are used to find 
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the approximate values ���� and ����. If �� value is known, the rational block method calculates the 
approximate value ���� using formula (10), and then it calculates the approximate value ���� using 
formula (16). This means that, in each block, the rational block method obtains the ���� and ���� 
values in one iteration. 
 
3.  Numerical method 

We write three methods to solve the initial value problem (1). The methods are the first order Runge-
Kutta (Euler's method), the second order Runge-Kutta (Heun's method) and the rational block method. 

The first order Runge-Kutta (Euler's method) [1] has the iteration formula: 
���� = ��  $ �� . 

Here $ is the step size. 
The second order Runge-Kutta (Heun's method) [1] has the iteration formula: 

���� = ��  $
2 ���  ��� , 

where 
�� = ����, ��� , 

and 
�� = ����  $, ��  $ ���. 

The rational block method is given by the iteration formulas: 
 

���� = ��  2 $�����

2 �� − $ ���  , 
 

���� = ����  $ ��������� − ���
2 ����� − ��� − $ ����

 . 
We note that the rational block method is a two-step method. 

4.  Numerical results 

In this section, we give some examples to assess the performance of the Runge-Kutta (Euler's and 
Heun's) and rational block methods. We want to see the maximum error of each method with the 
definition of the error is as follows 

error = max
�8�8)

�|�:;<=> − �?@A:BC=|� 

where / is the number of integration steps. For computation, we use the Matlab software for 
numerical programming and ploting the results. As follows, we have three problems considered by 
Ying et al. [7] to solve. 

 
Problem 1 

Consider the initial value problem 
����� = −10 ����, ��0� = 1, � ∈ �0,1�. 

The exact solution is given by ���� = E'��%. 
 

Table 1. Maximum errors for Problem 1. 
/ Euler Heun Rational block 

32 0.066654 0.007616 0.003021 
64 0.030792 0.001683 0.000749 
128 0.014851 0.000397 0.000187 
256 0.007304 0.000096 0.000047 
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Figure 2. Exact and numerical  

            results for Problem 1. 
Figure 3. Errors of numerical 

              results for Problem 1. 
 

As given in Table 1 we obtain that the maximum error of the rational block method is smaller than 
the Euler and Heun methods. All three methods are convergent. That is, if the value of / is greater, the 
error of the numerical solution gets smaller. From Table 1, Figure 2, and Figure 3 we find that the 
numerical results are accurate, as numerical solutions are close to the exact solution. The error of each 
method is less than 0.07. We infer that all three numerical methods solve the problem quite well. 
 
 
Problem 2 

Consider the initial value problem as follows: 

������  101 �����  100 ���� = 0, ��0� = 1.01, ���0� = −2, � ∈ �0,1� . 

This problem can be rewritten as a system of first order ordinary differential equations: 

����� = F���, ��0� = 1.01, 
 

F���� = −100 ���� − 101 F���, F�0� = −2, 

where � ∈ �0,1�. The exact solutions to this system are given by: 

���� = 0.01 E'��� %  E'%, 
 

F��� = �� = −E'���% − E'%. 
 
 

Table 2. Maximum errors for Problem 2. 
/ Euler Heun Rational block 

32 298872461.45 1.253348 x 10^12 0.017842 
64 0.007843 0.004487 0.003982 
128 0.002421 0.000661 0.000940 
256 0.000880 0.000126 0.000233 
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Figure 4. Exact and numerical 

            results for Problem 2. 
Figure 5. Errors of numerical 

              results for Problem 2. 
 
 

From Table 2, we observe that if the number of discrete points is too small, such as / = 32 (that is, 
the step size is too large) the Euler's method and Heun's method are not stable, so their numerical 
errors are very large. However, the Euler's error and Heun's error get smaller for larger number of 
discrete points. For this problem, the Heun's method performs best giving smallest error for large 
number of discrete points. All three methods are convergent. For this problem, illustration of exact and 
numerical results as well as their numerical errors are shown in Figure 4 and Figure 5, respectively. 
 
 
Problem 3 

Consider the following initial value problem: 

����� = 1  �����, ��0� = 1, � ∈ �0,1�. 

The exact solution to this problem is given by  

���� = tan J�  K
"L. 

This exact solution has a singularity point. 
 
 
 

Table 3. Maximum errors for Problem 3. Here inf stands for infinity. 
/ Euler Heun Rational Block 

32 186471279.48 inf 13.92 
64 inf inf 3.64 
128 inf inf 1.20 
256 inf inf 67.13 
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Figure 6. Exact and numerical 

            results for Problem 3. 
Figure 7. Errors of numerical 

              results for Problem 3. 
 

We have noticed that the solution has a singularity point at � = M/4 ≈ 0.7854. Due to the 
singularity of the problem, Runge-Kutta methods are divergent, as indicated in Table 3. That is, the 
Euler's and Heun's methods are not able to solve this problem. In contrast, the rational block method is 
still able to solve this problem, even though its approximate value is very not accurate. For this 
problem, illustration of exact and numerical results as well as their numerical errors are shown in 
Figure 6 and Figure 7, respectively. 
 
5.  Conclusion 
We have solved initial value problems using the first order Runge-Kutta, second order Runge-Kutta, 
and rational block methods. The rational block method is fast in computation, because this method can 
solve two points in one iteration. From numerical results, we find that rational block method is more 
robust than the other two methods. That is, the rational block method is able to solve a wider range of 
problems including those with singularity in their solutions. 
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