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Abstract. We study nonlinear sigma model, especially Skyrme model with twist: twisted
Skyrmion string where twist term, mkz , is indicated in vortex solution. To add gravity, we
replace g“* in Lagrangian system with a space-time metric tensor, g** which in view of the
time-independence and cylindrical symmetry of the assumed vortex solution is taken to be a
function of r alone. We use ode45 for numerical calculation, i.e. a tool box in Matlab to solve
coupled Einstein field equations which have ordinary differential equations (ODE) form.

1. Introduction to Nonlinear Sigma Model
The Lagrangian density of a free (without potential) nonlinear sigma model on a Minkowski
background space-time is defined to be [1]

1 uv A B
L—ﬁha(@?? 6#¢ 0,¢ (1)

where 7,5(¢) is the field metric, 7

uv

is the Minkowski metric tensor, A is a scaling constant with

dimensions of (1ength/energy)”2 and ¢ =¢" is the collection of fields.

One of the most interesting examples of a O(N) nonlinear sigma model, due to its topological
properties, is the O(3) nonlinear sigma model in (1+1)D, with the Lagrangian density

1w
= 7"0,9-0,¢ 2
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where 1 and v range over {0,1}, and ¢ = (¢',4°,4°), subject to the constraint ¢-¢ =1, where the dot
(-) denotes the dot product on real coordinate space of three dimensions, R®.
A simple representation of field, @, (in the general time-dependent case) is [2]
sin f(t,F)sing(t,r)

¢=|sin f(t,r)cosg(t,r) 3)
cos f (t,r)
where f and g are scalar functions on the background space-time, with Minkowski coordinates

X“ =(t,r).
If a Skyrme term is added to O(3) nonlinear sigma model, the result is a modified Lagrangian
density, i.e. Skyrme model [2]

L= 71" 0,0-0,6=Ka"n" (0,4x0,4)-(2,x0,9) @)

where the Skyrme term is the second term on the right hand side of (4).

2. The Gravitational Field of a Twisted Skyrmion String
We are interested in constructing space-time generated by a twisted Skyrmion string. Without gravity,

the Lagrangian density of the system is L,, as given in equation below [3]

L =2—22(77’”6”favf +sin® £7'0,90,9) 5
~K, [25“’12 f(n*o,f0,f)(n"0,90,9)-2sin* f ("0, favg)z}

To add gravity, we replace n“"in L, (5) with a space-time metric tensor, g**, which in view of the

time-independence and cylindrical symmetry of the assumed vortex solution is taken to be a function
of r alone.

Metric tensor, g, is of course the inverse of the covariant metric tensor, g, , of the space-

uv !
time where g*” :(gw )71. We use a cylindrical coordinate system (t,r,8,z), where t and z have
unbounded range, r €[0,o0) and & [0,2z). The metric tensor with its components can be written as

a matrix below
g, O 0 0

L0 0 9y 9
0 0 g 20 g 24

where the components of metric tensor are all functions of r, and the presence of the off-diagonal
components g,, =g,, reflects the twist in the space-time.
The Lagrangian we will be using is [3]

L, :T}(Q”Va,,favf +sin’ 19"'9,90,9)

()
—KS[Zs.in2 f(g"vé’ﬂfavf)(g"’%’;’,(gc’ﬁﬂg)—Zsin2 f(g‘”éﬂfavg)zJ
where
f=1(r), g =néd + mkz (8)
We need to solve:
i.  the Einstein field equations
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872G
G,uv == C4 Tyv (9)
where the stress-energy tensor of the vortex, T, , is defined by
oL,

TW =2 ag"'v — g#v L2 (10)

and
1

G, =R, —EQWR (11)
with R, the Ricci tensor and

R = gyv R/JV = g/—”/ R/,zv (12)
the Ricci scalar;.

ii.  the field equations for f and ¢
poth A g, )
o(of Iox*) of o(eg/ox*) ag

However, the field equations for f and g are in fact redundant, as they are satisfied
identically whenever the Einstein field equations are satisfied, by virtue of the Bianchi
identities (i.e. permuting of the covariant derivative of the Riemann tensor) V G* =0. So,

uv
only the Einstein field equations will be considered [3].

To simplify the Einstein field equations, we first choose a gauge condition that narrows
down the form of the metric tensor. The gauge condition preferred here is that [3]
U009, _(ggz )2 = rz (14)
The geometric significance of this choice is that the determinant of the 2-metric tensor projected onto
the surfaces of constant t and z is r?, and so the area element on these surfaces is just rdrdé .
As a further simplification, we write g, = A?, O, =-B?, (/P =-C?, g,, =@, where A, B,

2 2
C, o are functions of r and so g, =—(r gzw J The metric tensor, g, , therefore has the form
A* 0 0 0
0 -B* 0 0
g,=| 0 0 -C° ® (15)

Substitute (6), (8) into (7), we obtain L, as below [4]

- 2 2
L 1 {1 , 4K,sin f(nzgu_ankggﬁmzkzg%)}[afj

T 29| 22 r’ or
9 2 (16)
+%(nzgZZ — 2nmkg,, + m*k*g,, )

From (10), (15) and (16), we derive the non-zero components of the stress-energy tensor, T, , as
below
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2 s 2 2 2 L2

Tttziz iz+4NKsjm flrof)y A stln2 f (17)
2B 4 r or 2A°r
s 2 2 2 s 2

T - 12+2NKS§|n f (@j B stm2 f (18)

24 r or 2A°r

C?( 1 4NK.sin?f)of Y (, C2N)sin?f
T —_ — 4 s — |+ 0+ = | 19
w 252(,12 r? J[arj 2r2 | A2 (19)

o (1 4NK_sin? f )\ af V @N \sin® f
T, = | =4 12| 4| nmk — 20
o 252[2,2 r2 ](&j ( 2r2j A2 (20)

2 2 2 2 in2
To=—a 1+ 2 || L ani sin® f (ﬂj L w (21)
2B’C r2 )\ 4 or 2C r?)) 2

where N =n?g,, —2nmkg,, + m’k?g,, . Note that T,, is in general non-zero, provided that either mk

or @ is non-zero. In fact, mk acts as a source term for w. The twist in the vortex is therefore solely
responsible for a non-zero circular stress, T,, .
In components form, the Einstein field equations (11), corresponding to the metric tensor are
AZR L BR 2R R r’+o’
Rtt_ G _R 2 ’GH€:R00+C71GezzRez_%szz:Rzz*—%R (22)

3. Solution of the Einstein Field Equations
We use ode45 for numerical calculation, i.e. a tool box in Matlab to solve ordinary differential
equations (ODE). Such tool box works based on explicit formula of 4th, 5th order Runge-Kutta.
Solution scheme with ode45 (or in general, Runge-Kutta) is transforming one or more than one
differential equations of n order into n differential equations of first order. In order to obtain numerical
solution, we need n suitable initial values for n differential equations of first order. Perhaps, this is the
reason why this method is called an initial value method, and system of equations which are solved
called an initial value problem (IVP) [4].

The equations (22) can be rearranged as source equations for the first derivatives of B and
f and the second derivatives of A, C, @ as follows [4].

1 3 2 2 2,212
B'=%+r5? n_z 1+a)_2 +2nmzka)+C mzk sin’® f (23)
A A C r r r
n2 ®*) 2nmke C*m?k* e
fr=+ —2¢K, (1+—2]+ —t+—— }sin2 f
2 r r r
1 12 2 12 1/2
a)az 'C C _Cc” 1+a)_2 _a)_z (24)
C rC C r 4r
o’) 2nmke C’m*k* |,
2/12 r_2 + 7 + 7 sin” f
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Tttt T T

' 2 2 2 2,212
pro ALAT i f{n [1+“’ ]+2nmka) C2mk }
r A r r

-1
2 2 24421,2
{—222 —25K{%[1+w—2]+ 2nn12ka)+ ¢ n12 k }.in2 fJ
r r

r
12 2 1 1 1 12
C,,:cC [1+ 20 J 200'C' C' Co

A" wAw'C' AC' AC” o’ Aw”
ts TRz 2| T
rA'B2 r rc rc C r 4r
—7 2K, (25)
A +5ABZ n? L o’ +2nmka)+CZm2k2 sin? 1
% 2% | C? r re re

- 4
r r 2r?
eB?sin® f| n? o’ 2nmke C’m’k®|(C ,
| S|t [t T =—rC
A C r r r 2

gsinzf{n2 wz) 2nmka szzkz}
+— 1+ + +

2 | c? r? r? r?
A'C+a)a)'C'+E_C_'2 1+a)2 _a)'zC
CB? » rA r? r C r’) 4r?
A2 ) +gBZCsin2 i {nz (“ w2J+ 2nmkw+C2m2k2}
X 2 ~2 2 2 2
24 C r r r
-1
2 2 2 21,2
><[2i/12—25K55in2 f{%(l+ a)2 }+2nnlka)+c rr12 k D
r r r
(26)
. o 4eC* @* 40’w'C' 40C' ww"”
O"=—+——|1+— |-— - +—
r C r r<c rc r
eB*(w—rw")sin® f | n? ®*) 2nmke C?m?k?
- 22 c? 1+ r2 + r2 + )
5. n? o’) 2nmke C?m’k’
+esin® f g 1+r—2 + = + =
a)A'+a)2w'C'+a)C'_a)C'2 1+a)2 _a)a)'2
wB2 » rA  r’C rc C? r’ ) 4r?
A? | cwB?sin? f | n? ®*) 2nmke C?m?%k?
. T M) e e
-1
2 2 2,~~21,2
x( 82 —Zngsin2 f{n—z(h wz J+2nmzka)+c mzk D
24 C r r r 27)
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The () sign at (24) suggest us to choose it, so that the values of f '<0 for most or all values of r.

Here we choose the sign (-). Equation (23) to (27) need to be solved simultaneously. To do so, we
convert second order ODE from (25) to (27) to be first order ODE. At this stage, one finally get eight
coupled first order ODEs which are ready to solve.

We obtain equations to generate initial value for r=r,_, , i.e. [4]

ca’B,( 1 K.
By + —2| ———— |2 28
(mln) 2 [iz Boz ] min ( )
f(r,,)=7+ar,, (29)

gK a A0 2
30
( mln) Ab 2C2 m|n ( )
eK.a’

C(r B +——r 31
( mln) 0 mln ZBO min ( )
( mln) a)lrrrzﬁn (32)

where B,, a, A, o, K, and 4 are unknown constants. For r — oo, no matter of our choices for the
values of such unknown constants, we want to graph B(r), f(r), A(r), C(r)/r and (r2 +° )/C2
solutions respectively as graphics which are asymptotic to B—1l, f—>0, A-l,
C/r — (const. #0), and (r’ +a)2)/C2 —1.

The values assumed for B, and A, affect the solution only by rescaling the metric functions,

the radial coordinate, r, and the twist term, mk . This follows from the fact that:
i.  All the components of the Einstein tensor, except G, in (22), depend on A only through
A"/A or A/A, while G, is proportional to A?. Similarly, all the components of the stress-
energy tensor, except T, in (17) to (21), do not depend on A, while T, is proportional to A”.

So, we can multiply A by any non-zero constant without affecting any of the other metric
functionsor f .

2 2
ii. A transformation of r—cr, i—)(lji d—za(%jd—z B—>(EJB, 0 —Ca,
dr c/dr dr c® )dr c
mk —cmk , where ¢ is any positive constant, leave the field equations (23) to (27)
unchanged.

So, it is always possible to divide A by A, and B by B, so that the initial values of A and B
(atr =0) are both 1. And in doing this, C, is also rescale to 1, as C =C,r +... is unchanged, and so if
r — B,r we must have C, —C,/B, =1. Making this rescaling simplifies equations (28) to (32), i.e

B(r,,,) = 1+%(%—K a j 2 (33)
f(r;,)=m+ar,, (34)

Alf) - 1—5K2a 2, )
Clt) =t + 522, (3)
(1) = O, @37)
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If we define r_ =0.0001, r, =4x10', £¢=87, a=-0.186, @ =10", K, =4x10",

m

A=2100, mk =10"°, we obtained graphs of typical solution as follows

w107
120

=
]
T

I:I | 1 1 1 | 1 1 1 | ]
20 40 60 g0 100 120 140 180 180 200

r

Figure 1 Typical form of the B(r)—1 function
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Figure 2 Typical form of the f(r) function

A -1

_1D 1 1 1 1 1 1 1 1 1 ]
20 40 B0 g0 100 120 140 160 180 200

¥
Figure 3 Typical form of the A(r) -1 function
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Figure 4 Typical form of the —= -1 function
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Figure 5 Typical form of the >— —1 function
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