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Abstract. A fast and efficient numerical method for finding the modes of a multilayered 

waveguide is proposed. Using the complex vector of the Riemann-Silberstein has resulted in a 

reduction of the order of the differential equations describing the passage of light through the 

different layers, as well as a double reduction of the searched variables. The approximation of 

the differential equations is made by the method of Galyorkin by a suitable choice of the base 

functions. The calculation of the effective indices and their corresponding wave configurations 

is realized by the inverse-shifting power method with Rayleigh's quantity. The method was 

successfully applied waveguide systems, generating values close in the effective indices. 

1.  Introduction 

Waveguides are essential building blocks of diverse photonic integrated circuits such as polarizers, 

switches, filters, rotators, and modulators. To accomplish the desired characteristics, these functional 

devices are mainly designed by altering the material characteristics by using electro-optic, magneto-

optic, and thermo-optic modulations. The determination of eigenmodes is a fundamental problem for 

waveguide optics. Several techniques are commonly used for the computation of the electromagnetic 

modes of waveguides, including finite element methods, mode-matching techniques, method of lines, 

and finite difference methods. Most significant are finite-element frequency-domain (FEFD)-based 

eigenvalue mode solvers [2, 3], the finite-element beam propagation methods (FE-BPMs), the finite-

difference beam propagation method (FD-BPM), and the finite-difference frequency-domain (FDFD)-

based eigenvalue mode solvers [6,7]. 

Many methods completely neglect the anisotropy of the constituent materials. The methods which 

take into consideration the material anisotropy require the diagonal permittivity tensor expressed in the 

coordinate system of the waveguide. For waveguide with layers of liquid crystals (LC) with arbitrary 

molecular orientations, the nine elements of the permittivity  tensor  are  all  non-zero. 

In this paper we present an algorithm, based of Galjorkin’s method of pseudoorthogonal functions 

for solving full-vector modes of optical waveguides with arbitrary permittivity tensor, i.e., with general 

three dimensional (3D) anisotropy. This can be observed in [6,7] as we incorporate perfectly matched 

layers (PML) as the absorbing boundary conditions at the outer boundaries of the computational 

domain. For the purpose of optimal numerical realization we have proposed the numerical scheme 

with only one complex array similar to the complex potential of Riemann- Silberstein [1], instead of 

four field components (two for transverse  electric field components xE , yE  and two for transverse 

magnetic field components xH  and yH  - total four arrays). The eigenvectors and eigenvalues of the 

waveguide were calculated using a dynamic shifted inverse power method with the Rayleigh quantity. 
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2.  The model 

Multi-layer waveguides are a system of layers with different refractive indices designed to limit the 

spread of the electromagnetic wave in a single (core) or in a small number of layers. If a material 

consists of an anisotropic layer (for example, represents a crystal, polymer, etc.) we have a 3D 

anisotropy. For modeling the properties and distribution of the electromagnetic (EM) waves we use the 

system of partial differential equations of Maxwell, under appropriate boundary conditions associated 

with the properties of media of layers through which they pass and reflect. We assume that the 

properties of the media are modeled by the non-diagonal and non-symmetrical complex permittivity 

tensor    and by the diagonal tensor of magnetic permeability   . 

For the analysis of the waveguide, the computational domain is normally used (figure 1), where the 

waveguide cross-section in the transverse ( , )x y  plane is truncated and surrounded by PML (perfect 

matched layers), in which the attenuation of the wave does not depend on its direction, but by 

artificially introducing appropriate electrical and magnetic losses. The incorporation of PML regions 

allows the analysis of leaky modes.  

 

Figure 1. The cross-section of an arbitrary waveguide with the PML, placed at the edges of the 

computing domain. 

 

A periodic dependence on a wave of time is assumed, i.e. the presence of the factor  exp i t   

where   is the angular frequency and t  the time. The direction of propagation of an electromagnetic 

wave is parallel to the axis 0z , i.e. the expression  exp i z  describes the propagation, where   is 

the constant of propagation. It is also assumed, that the tensors of dielectric permittivity  
j

  and 

magnetic permeability  
j

  in any “j-th” layer are independent of time t .  

For the boundary conditions of the considered anisotropic waveguide in the PML regions, the 

permittivity and permeability tensors are taken to be: 
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Using ideas from papers [6, 7] we may determine the complex PML parameter s , which controls the 

field attenuation as follows: 

j-th layer 
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Here e and m  are the electric and magnetic conductivities of the PML, 0  and 0  are permittivity 

and permeability of free space, and n is the refractive index of the adjacent computing domain. This 

relation means that the wave impedance of a PML medium exactly equals that of the adjacent medium 

in the computing window regardless of the angle of propagation. 

2.1. Application of the modified vector of Riemann- Silberstein for reducing and simplifying the system 

of partial differential equations for calculating modes of an anisotropic waveguide. 

Our new original proposal is to replace the six unknown calculated field components  , ,x y zE E E E  

and  , ,x y zH H H H with only three complex field components  , ,x y zF F F F by analogy [1] 

with Riemann- Silberstein vector. For this purpose, we present the permittivity and permeability 

tensors as: 
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Let vector F  by analogy with Riemann-Silberstein vector be 0 0[ ] [ ]
2 2

F n E i m H
 

  , 1i   .  

Then for each of the layers the according to the assumptions  div 0F   and 

 rot [ ][ ] [ ]F n m F F
c c

 
    , where 

0 0

1
c

 
  is the velocity of light in free space. 

Consequently, for each layer it is necessary to solve the differential system: 
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. (5) 

To form the eigenmode equations we need to eliminate 
zF  from the third of equations (5), i.e., 
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 And after some obvious algebraic simplification we have: 
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When the waveguide media can be represented by diagonal permittivity tensor [ ]  and with an 

identity permeability tensor [ ] , (i.e. when [ ]n  is related to the refractive index), which is fulfilled for 

most optical media, then a significant simplification is achieved: 
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After successfully solving the eigenmode system (7) for each eigenvalue   and eigenvector F we 

can easily find configurations of corresponding mode fields E , H  and  the density of their 

electromagnetic energy W  by using the expressions: 
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where  *F  is the complex conjugate of F . 

2.2. Application of Galjorkin’s method with a new basis of pseudo-orthogonal functions for solving the 

differential eigen system.  

We look for the solution similar to the method of collocation using Galjorkin‘s method assuming that  

solutions  ,
x

F x y  ,  ,
y

F x y  are presented by a linear combination of types : 
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where xijF  and yijF are the exact values of the solution ( , )x yF F  at the point of the irregular 

rectangular grid with coordinates  ,
i j

x y . Here
1

N and 
2

N  are the corresponding number of irregular 

grid divisions of variables x  and y , i.e.  
10 1, , , , ,i Nx x x x x  and  

20 1, , , , ,j Ny y y y y . 

Functions      
1 10 0, , , ,x N x x NF x x y F x y F x y  ,      

2 2
0 0, , , ,

Ny N y y yF x y y F x y F x y   are 

chosen to satisfy the boundary conditions. 
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Unlike commonly used in finite element methods linear functions (having derivatives different 

from zero of only the first order) or spline functions (having derivatives different from zero to a 

maximum of second or third order) the proposed functions have derivatives of any order.  

Pseudo-orthogonal functions  ,
ij

x y as we presented in [2] are equal to 1 at grid point  ,
i j

x y  or 

equal to 0 at any other point on the grid. They have non-zero derivatives of any row and are defined as: 
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Therefore, we receive linear algebraic system for determining eigenvalues   and eigenvectors U . 
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 for each 11,2, , 1k N    and  21,2, , 1m N  . 

3.  Numerical examples 

As a first example we solve a 19 layer GaxAl1-xAs-AlAs waveguide structure for which the nine TE 

mode effective indices are nearly degenerated [4]. The index profile consists of six thin layers of 

Ga0.8Al0.2As separated by AlAs layers and the three layers of Ga0.6Al0.4As that are also separated by 

AlAs layers.  

 

Table 1. Calculated TEn mode normalized propagation constants by our method, compared with the 

results presented in [4]. 
Mode Our results at 4096 divisions Results in[4 ] 

TE0 3.0130388 + 0.000000009i 3.013039 

TE1 3.0130253 + 0.000000003i 3.013025 

TE2 3.0130091 + 0.000000011i 3.013008 

TE3 3.0129832 + 0.000000037i 3.012984 

TE4 3.0129566 + 0.000000145i 3.012957 

TE5 3.0129342 + 0.000000101i 3.012933 

TE6 3.0129119 + 0.000000048i 3.012915 

TE7 3.0128931 + 0.000000993i 3.012891 

TE8 3.0127597 + 0.000003457i 3.012753 

As a second example, we applied our method to the analysis of 3D anisotropy of a nematic LC 

channel optical waveguide, calculated through the pseudospectral method in [5]. 
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Table 2. Calculated effective indices at various values of angle φ for the first seven modes, compared 

with results in [5]. 
Mode 

 

Results for twist angle φ Results for twist angle φ  in [5 ] 

00 300 450 600 900 00 300 450 600 900 

1 1.674 1.674 1.675 1.675 1.674 1.674 1.674 1.674 1.674 1.673 

2 1.630 1.629 1.628 1.629 1.630 1.629 1.627 1.627 1.629 1.631 

3 1.620 1.623 1.619 1.617 1.614 1.620 1.622 1.620 1.617 1.613 

4 1.575 1.576 1.576 1.572 1.570 1.574 1.574 1.574 1.572 1.570 

5 1.553 1.544 1.546 1.554 1.561 1.553 1.543 1.546 1.553 1.560 

6 1.533 1.538 1.533 1.525 1.513 1.534 1.540 1.534 1.524 1.514 

7 1.501 1.502 1.501 1.502 1.501 1.502 1.502 1.502 1.502 1.502 

4.  Conclusions 

This study has developed an efficient   modesolver for solving anisotropic multilayer waveguides with 

full 3D anisotropy.  

Using the method of Galjorkin with our new proposed system of pseudo-orthogonal functions leads 

to a sparse eigen algebraic system with band structure. The advantage of these functions is that they 

are sufficiently smooth and have derivatives of any order. 

We generalized the idea of Silberstein when permittivity   and permeability   of the layer’s 

media are tensors [ ]  and [ ]  . This is achieved by presenting them as the product of two identical 

tensors [n] and [m]. So for each layer, it is sufficient enough to solve only a single equation 

[ ][ ]F n m F
c


   . 

Instead of using the standard eigenvalue matrix equation for the constant of propagation    

involving four transverse field components, we involve only two (as in the complex vector of 

Riemann- Silberstein) which halves the required computer memory and necessary calculation time.  

Numerical results have shown that the proposed scheme is more efficient and still accurate for 

investigating all mode problems compared to the finite element methods or finite-difference methods 

that are generally used.  

Algorithm has been successfully used to solve guided modes on a liquid-crystal optical waveguide 

with arbitrary molecular director orientation and for solving of 19-layered waveguide structure, in 

which case the nine TE mode effective indices are nearly degenerated. 
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