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Abstract.   The contribution to the phase of the atom interferometer caused by the gravity field of a 
massive test mass is considered. This contribution can be extracted by applying the double 
difference technique to measure the Newtonian gravitational constant G. Estimates and further 
calculations showed that after choosing the largest (given the current state of the art) multiphoton 
wave vector, the time delay between pulses, the mass of the test body and the signal optimization in 
respect to atomic positions and velocities, one should be able to obtain an accurate G measurement 
of 200 ppb, which is 2-3 orders of magnitude more accurate than what can currently be 
obtained. Calculated variations of the phases under the small deviations of atomic variables made it 
clear that atom clouds’ radii and temperatures have to be as small as 100 micron and 100 pK, 
which has also been achieved already. 

 
1. Introduction 
Among the fundamental physical constants c, , G, the Newtonian gravity constant (CODATA, 2015) 
 G=6.67408(31)×10-11 m3kg–1 s–2  (1) 
is measured at the lowest accuracy of only 46ppm. In this talk, we consider the possibility of increasing 
this accuracy by using the atom interferometry technique [1]. This technique was first applied [2] by using 
a test mass moving vertically around the trajectories of atom clouds. For this talk, we assume [3] that the 
test mass has a cuboid shape with a small cuboid hole for atoms to go through, and that this cuboid shape 
consists of 2 parts moving horizontally to and from atom clouds (see figure 1).  We calculated the phase 
double difference 
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where ϕ(z,v) is a phase of the atom interferometer in which atoms are launched vertically from point z 
with velocity v. Since both atom clouds are irradiated by the same field and stay on the same platform, the 
vibration contributes equally to the phases and that contribution is excluded in the 1st order phase 
difference ϕ. When test mass halves are joined or separated (see figure 1a and b), phase differences are 
equal to ϕa,b. The part of the phase difference caused by Earth's gravitational field is evidently the same 
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for both differences, and this part is eliminated in the phase double difference. Therefore, 2ϕ depends 
only on the gravitational field of the test mass, which is linear in G. 

 
 

Figure 1. The test mass as a whole is cuboid with a narrow hole for Raman fields 
and atom trajectories. Atoms are launched from the points z1 and z2 with velocities 
v1z and v2z. Test mass consists of 2 halves. (a) Top view. Joined halves. (b) Top 
view. Halves separated on the distance 2Ld. (c) Side view, cross section x=0 for 
joined halves. 
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2. Optimization 
In contrast to [3] (where the calculation was made for the parameters’ modest values), we calculated the 
phases for 87Rb and the maximal value of the parameters achieved at the current state of the art in atom 
interferometry, i.e. for the time delay between pulses T=1.15 s [5], the effective wave vector k=7.248×108 

m–1, the test mass M=1080 kg of Pb [6], and the phase noise ϕerr=10–4 rad. The chosen value of k vector 
can be obtained by using multiphoton processes, first considered in [1]. This value is 45 times greater than 
the wave vector associated with 2-quantum Raman process in 87Rb. It was achieved [7] using a sequential 
technique.  

 

 

Figure 2. Dependence of the 
maximum of phase difference on 
cuboid half-size. 

 
The contribution to the phase caused by the test mass ϕ was studied in detail in review [8]. We 

obtained a response linear in the test mass gravity g assuming that [9] the magnitude of this field is small, 
 gg, (3) 
where g is the magnitude of Earth’s gravitational field. The ratio g/g is a small parameter of our theory. 
Evidently, only this part contributes to the double difference, 2ϕ=2ϕ. Using the Wigner representation 
of the atomic density matrix (first applied for atom interferometry in [10]), we showed that ϕ consists of 
3 parts, the classical part, the recoil term and the Q-term. The recoil term was obtained without expanding 
over recoil velocity k/Ma, Ma is the atomic mass, while for the Q-term, we used perturbation over gravity 
curvature tensor. Calculations performed in [8] showed that for the chosen value of the wave vector, the 
recoil term would overcome the classical part, while the Q-term is 2-3 orders of magnitude smaller, and 
we did not include it in the calculations presented here. From equations (62, 66, 73) in [8], the following 
expression is obtained for the sum of the classical part and the recoil term:  
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where x={0,0,z} and v={0,0,v} are the initial atom cloud's position and velocity, X(0)(x,v,t) is the atom 
trajectory, t1 is the time delay between the moment of the atoms' launching and 1st Raman pulse. 
Evidently, 2ϕ achieves the maximum when {z1,v1z} is the point of absolute maximum, and {z2,v2z} is 
the point of absolute minimum. We found these extrema iteratively using a reasonably wide area and 
reasonably small steps in z and v. The sizes of the area and steps were restricted by my PC's speed and 
power. For the given test mass M and density ρ, we found extrema as a function of cuboid vertical halfsize 
Lz, see figure 2. To get a maximum signal, we recommend choosing Lzm shown in figure 2 as vertical 
halfsize of test mass. Values of the other optimum parameters of the system are presented in table 1. 
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Table 1. Maximal value of the phase double difference and 
optimal values of the test mass and atom clouds variables. 

 
 
One can estimate the accuracy of measurement as 

 

410 rad 200 ppb
387rad

errGerr
G

 
   . (5) 

This accuracy is more than 200 times better than that claimed in CODATA 2015.  
 
3. Error model 
To achieve highly precise measurements of the interferometers' phases, one has to prepare both the atomic 
and proof mass system with great accuracy. The most challenging part is precisely positioning the atom 
clouds [3]. The extrema of the clouds positions and velocities are, obviously, preferable here. That is why 
the extrema (found above) in {z,v} space allow one not only to maximize the response, but also to make 
less stringent  the requirements for atom clouds’ position, velocity, temperature and size because the 
response becomes quadratic on variations of these variables near the extrema. 

Let us now allow small variations of the atom clouds’ initial positions, velocities (atomic variables) 
and small displacements of the test body halves (see figure 3). In this talk we calculated linear and 
quadratic dependences on atomic variables only. Their relative weights are presented in table 2.  

One sees that in spite of using extremum points {zi.vi} linear terms are not equal to 0. It is because 
extrema {zi,vi} have been found in section 2 approximately. One can find that coefficients in the linear 
dependences small enough so that, for allowed variations of position and velocity (see below table 3), the 
quadratic dependencies are not overcome by linear contributions. 

One can use nonlinear terms to estimate atom clouds’ radii and temperatures. Consider for example 
relative contribution 

 
2
iz z   (6) 

If Raman fields are sufficiently flat to neglect ac-Stark shift variation across the atom cloud, and if 
Raman pulses are sufficiently short to neglect the Doppler broadening of the Raman transition, then one 
needs only to average (6) over atoms’  spatial distribution.  
 

phase difference 2  386.52738
vertical halfsize Lzm  0.24219097m

horizontal halfsize Lhm  0.22162188m
1st cloud position z1 m  6.8517823m
1st cloud velocity v1 m  11.158930ms
2nd cloud position z1 m  6.2983410m
2nd cloud velocity v1 m  11.172994ms

MPLP-2016                                                                                                                                          IOP Publishing
IOP Conf. Series: Journal of Physics: Conf. Series 793 (2017) 012006          doi:10.1088/1742-6596/793/1/012006

4



 
Figure 3. Top view. Small variations of the atomic and proof mass variables. 

 
Table 2. Error model for 1080 kg test mass, atomic variables. 

 
 

Error model for 1080 kg test body weight

Term Relative weight

Linear in position
0.0012117481 z1
0.0011188391 z1

Linear in velosity 2.5456033  106 v1 z

2.3703001  106 v2 z

Nonlinear in position

6.6840356 x12y12
13.368071 z1

2

1.4586375 x22y22
2.9172749 z2

2

Nonlinear in velocity

9.0832760 v1 x2 v1 y
2 

18.166552 v1 z
2

1.9881322 v2 x2 v2 y
2 

3.9762644 v2 z
2

Positionvelocity crossterm

15.578255 x1v1 xy1v1 y
31.156509 z1v1 z

3.4018485 x2v2 xy2v2 y
6.8036970 z2v2 z
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For Gaussian distribution, 
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after averaging one gets 
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Requiring it to be equal to the expected relative error of phase measurement, err; one finds for atom 
cloud radius 

 
0

2 .i
errz


  (8) 

In the same manner, we determine atom clouds velocities’ variations and temperatures. These 
quantities are presented in table 3 for relative error value (5). Even though it is challenging to cool to those 
temperatures and focus on the radii, the temperatures and radii are higher than those achieved in article 
[12].  

 
Table 3. Atom interferometers' parameters one should hold to achieve measurements of 200 ppb. 

 
 
 

4. Conclusion  
We showed that using the atom interferometry technique, for the chosen geometry of the test body, at the 
positions and velocities of the atom clouds determined by the optimization, can give the double difference 
of the atomic interferometers phases as large as 387 rad at the phase noise level 10-4 rad. This should allow 
one to measure the Newtonian gravitational constant G  with an  accuracy  of 200 ppb, which is 2 to 3  
orders  of  magnitude better than that currently achieved using conventional methods. To achieve this 
result one has to realize SIMULTANEOUSLY (a) sequential technique to increase the effective wave 
vector, (b) small radii and (c) low temperatures of the atom clouds, determined by using the built error 
model. Each of the parameters is within the current state of the art in atomic interferometry. 
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