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Abstract. This paper presents a simple method based on Finite-Time 

Thermodynamics (FTT) to determine the thermal conductivity of atmospheric air. The 

method considers an atmospheric heat engine in which the air moves convectively on 

the border day-night driven by the Sun's energy. The numerical value obtained for the 

thermal conductivity reasonably accords with the reported value by Van Ness by the 

number of Rayleigh. 

 

1. Introduction 

A finite-time thermodynamics has been developed four decades ago, from the pioneering work of 

Curzon and Ahlborn [1]. As it is well known, Carnot's theorem states that for thermal cycles operating 

between two heat reservoirs at absolute temperatures  and  ( ), the cycle of maximum 

efficiency that can work between they temperatures is the Carnot cycle, consisting of two isotherms 

and two adiabat that take place reversibly. This fact implies that to the Carnot cycle has zero power 

output, since a reversible cycle consisting of quasistatic process require an infinite time to complete. 

The Curzon and Ahlborn (CA) engine (see figure 1) consists of two parts, a reversible one 

(endoreversible) which is an internal Carnot engine operating between  and , and another part 

formed by the two couplings between  and  and between  and  respectively, which 

constitute the irreversible part of the model. In addition, the heat transfer along the mentioned 

couplings is given by a linear heat transfer law of the Newtonian type, although other heat transfer 

laws can be used to model heat fluxes, so as Dulong-Petit law and Stefan-Boltzmann law among 

others. The endoreversible CA engine was a first step towards irreversible engine models by 

incorporating irreversible elements as thermal resistances at the couplings between the internal 

reversible cycle and the external heat reservoirs. The CA engine under maximum power conditions 

leads to the famous CA–efficiency given by , being . The present paper is 

organized as follows: In Section 2, we define the atmospheric winds; in Section 3 we maximize the 

power output; in Section 4 we analyze the tidal winds as heat engine driven by the Sun; finally in 

Section 5 we present some concluding remarks. 

2. Atmospheric winds 

The existence of two heat reservoirs at different temperatures makes possible the production of work. 

In fact, the planet's atmosphere is a working fluid illuminated by the Sun, thus the atmospheric gases 

tend to increase its temperature and they expand. Therefore, the illuminated gas by the Sun rises to the 

upper atmosphere. When moving to less enlightened places it is cooled, and the more density tends to  
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Figure 1. Curzon-Ahlborn 

endoreversible engine model. 

 Figure 2. Model of tidal winds 

or thermal tides [2]. 

 

sink back to the planet's surface. That is, the movement of gases is promoted by the differences in 

longitudinal temperature (geographical coordinates): the day lengths (floodlit) are warmer than the 

night lengths (unlit).  Such macroscopic cycles are one of the sources of the winds. These kinds of 

winds are called tidal winds or thermal tides, because air travel is much like the movement of tidal 

water from the sea [2], see figure 2. 

Taking the model of CA as a basis for modelling tidal winds, it follows that the temperature of the hot 

reservoir is the temperature of the Sun ( ) and the temperature of the cold reservoir is the 

temperature of the surface of the Earth at night ( ). On the other hand, thermal 

conductance  (see figure 1), is proportional to the Stefan-Boltzmann constant, 

, that is 

 , (1) 

being  the dilution factor, defined by  with  the Sun’s radius and , with  the 

half major axis and  the half minor axis of the elliptical orbit of a planet around the Sun [3]. 

Similarly, the thermal conductance  (see figure 1) is attenuated by the absorption coefficient  [4], 

thus 

 , (2) 

where  is the atmospheric thermal conductance, . 

2.1. Power output 

Figure 1 shows the CA model, which consists of two heat reservoirs (  and ) connected by two 

irreversible components (  and  associated to thermal conductances) to two isotherms of the working 

fluid (  and ) with an internal reversible Carnot cycle. Thus, the endoreversibility hypothesis [3] 

is 

 . (3) 

being  and  heat fluxes (heat transfer per unit time). From first law of thermodynamics, we have 

 , (4) 
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Figure 3. Overlap of implicit equations (10) and (11). 

 

with  the power output. We propose a law of heat transfer for each of the couplings between the 

working fluid and heat reservoirs, of the type 

 ,    . (5) 

 corresponds to a radiative transfer and  to a convective transfer in the day-night boundary [2]. 

Thus, the power output is given by [5,6] 

 , (6) 

 

where ,  [1]. We define the dimensionless variables, , 

,  and . Under these parameters we rewrite equation (6) to obtain 

 . (7) 

3. Maximization of the normalized power output 

Given the above expression we proceed to maximize the power output by using the variables  and , 

taking  and  as system parameters. To simplify the calculations, we normalize the power output in 

the following manner, . Then equation (7) becomes, 

 . (8) 

This expression is analogous to the conversion efficiency of solar energy , defined by De Vos [3]. To 

maximize given by equation (8) we calculate  

 ,     . (9) 

The following pair of transcendental equations is obtained 

 , (10) 

 . (11) 
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Figure 3 shows the intersection point ( ), of the implicit equations (10) and (11), for  and  

constants. For a different value of , it can be seen that within this set up is critical point ( ) [7]. 

3.1. Tidal winds as heat engine driven by the Sun 

Taking the temperature of the Sun ( ) and the temperature of the surface of the Earth at night 

( ), the parameter , the coefficient of thermal conductances , determine 

the appropriate configuration of the heat engine, such that the power output or the efficiency of solar 

energy conversion, equation (8), are maximal. Thus, for a value of  and . The 

maximum values of  and  are  and  respectively. By using equation (8), 

, for the efficiency of solar energy conversion. De Vos reported a value for the 

conversion efficiency of solar energy, of the tidal winds, of the , [3] and Barranco-Jiménez 

report a value of 17.33% [9], therefore the value of   it is appropriate for the configuration of the 

tidal winds, such that the power output is maximum. On the other hand, from the definition of , it 

follows that 

 , (13) 

where we have used the equations (1) and (2). Then, it is obtained that the atmospheric thermal 

conductance is given by 

 . (14) 

The dilution factor for the Earth is given by  [3]. On the other hand, we know that the 

absorption coefficient of the atmosphere is  [4], then we finally obtain 

 . (15) 

Which is a value reasonably close to that reported by Van Ness [8], which has a value of 

, for the thermal conductance of air at ambient temperature. 

 

4. Concluding remarks 

In this paper we have calculated the approximate value of the thermal conductance of air through a 

very simple model of heat engine operating at finite time. As is well known, although the atmosphere 

has a temperature distribution with a different for each one of the atmospheric layers (troposphere, the 

tropopause, stratosphere, etc.), the behavior of the winds can be simulated, in first approximation, by 

an atmospheric heat engine operating between two extreme temperatures, with it has is troposphere 

value [2,9,10,11]. Among these models is that of De Vos and Flater [2] which focuses on the 

horizontal winds at night-day border. Based on this model we have proposed a simple method for 

calculating the thermal conductance of air, that gives a very close to that reported by Van Ness [8] by 

using the Rayleigh number value; a dimensionless number used in calculations of heat transfer by 

natural convection in fluid mechanics. As can be seen in the present work based on the general 

methods of thermodynamics, they can be used to calculate some thermal properties of materials (air in 

our case). 
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