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Abstract. In this work the estimation of Reynolds number in a 2-dimensional Poiseuille flow is 

explored employing artificial neural networks (ANNs). The velocity fields of the fluids were 

generated evaluating the Hage-Poiseuille equation for different Reynolds (Re) from 20 to 2000. 

The velocity profile obtained for each case is used as input data for the ANNs, which is then 

trained to predict the Re. The results show an accuracy of at least of 99.5% in all prediction 

cases. This analysis is the first step towards the construction of a Machine Learning algorithm 

capable of computing physical parameters in more general scenarios. 

1.  Motivation 

The study of flows in incompressible fluids at moderate and low Reynolds (Re) number has 

applications in many relevant physical problems, such as laminar flows through channels and pipes, 

for which, extensive studies have been done in literature [1,2]. 

Nowadays, many of these applications are present in the field of engineering , involving viscous 

incompressible flows through ducts, filters and other devices. With that motivation and given its 

complexity, several studies have been performed in order to obtain accurate solutions to the Navier-

Stokes equations describing the behavior of the fluid. 

In complicated problems, where the solutions have to be computed using numerical methods, the 

estimation of some physical parameters is not an easy task. For instance, if we want to estimate the 

Reynolds number for a 2-dimensional flow around an obstacle, we need a method that using the vector 

fields obtained from the simulation (for example, the velocity field) can predict the Re associated to 

that experiment. As a first step to implement it, in this paper we present a simpler configuration: a 

Poiseuille flow and propose a method to estimate Reynolds numbers in the range from 20 to 2000. 

To perform the estimation of the Reynolds number we use a Machine Learning method: artificial 

neural networks (ANNs), that have been very useful in pattern recognition, in particular they have 

been used to estimate and predict parameters in problems involving fluids. For example in [3] the 

authors compute the velocity and diffusion coefficient of a fluid that creates a flow around an obstacle 

in two dimensions using ANNs. In [4] an implementation that predicts the power ratio and torque of a 

vertical axis wind turbine training ANNs with experimental data were done. In [5] it is predicted the 

friction factor of an open channel flow. In [6] the flow patterns of different Reynolds numbers are 

obtained using ANNs, and in [7] the authors estimate the Reynolds number and the dimensions of the 

enclosure from the knowledge of the centreline velocity field using an inverse method. The structure 

of the paper is as follows: In section 2 we briefly, describe the Poiseuille flow problem, in section 3 
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the concepts of ANNs, in section 4 the methodology to estimate the Reynolds number and in section 5 

we present the results and in section 6 we conclude. 

2.  Two dimensional Poiseuille flow 

The Poiseuille equation, is a physical law that allows to describe the presssure drop in a Newtonian 

incompressible fluid with a laminar flow through a cylindrical pipe of constant cross section. It is 

assumed that the diameter of the cylinder is negligible compared with its length, and no acceleration of 

the fluid within the pipe is considered.  

In classical hydrodynamics, the flow velocity at a given point in the space, can be obtained by 

solving the momentum equation of Navier-Stokes [1]. For a Poiseuille flow in two dimensions the 

analytical solution for the time-dependent behaviour is given by 
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where F is the magnitude of the body force in the direction of the flow, L is the diameter of the 

cylinder, and   is the kinematic viscosity. The second term in the right hand side of equation (1) 

computes the transitional behavior of the solution. Thus, the stationary solution for the Poiseuille flow 

is 
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For a Poiseuille flow, the Reynolds number is 
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where 
maxv , is the maximum velocity characteristic achieved in its steady state, related to the 

magnitude of the body force F by 
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In this paper we propose a method to estimate Re as a function of the x component of the velocity 

of the y-axis, i.e., ( ),xv y using the ANNs machinery. In the next section, details about ANNs' concepts 

and operations are described. 

3.  Artificial neural networks concepts 

ANNs are a Machine Learning paradigm based on biological systems, commonly used in regression, 

pattern recognition and classification problems. ANNs are fed with some variables or data on a 

particular problem, and after a series of calculations made by the composition of non linear functions, 

give an outcome related with the information they were trained. The most common ANN is the 

Multilayer Perceptron (MLP), derived from the simple Perceptron [6], which consists of 

interconnected layers of nodes or neurons: an input layer, one or several middle or hidden layers and 

an output layer.  In a MLP  information goes from input to hidden layers and later from hidden to the 

output one. For neurons in hidden and output layers the connections are regulated by the weight 

coefficients, which are adjusted in the training phase.  

In order to illustrate a MLP, or ANN in this case, in organization and operation, consider a 3 layer 

network with n inputs, m hidden neurons and l outputs. The relation between and input vector 

 1 2, , , nx x x x  and the k-the output neuron is determined by the expression 
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where 
ij and 

jk  are the connection weights between the neurons in input-hidden and hidden-output 

layers respectively; 
0 j and 

0k  are some extra weights called bias, operating as thresholds; F and G 

are the named neurons' activations functions on each layer, commonly the logistic or hyperbolic 

tangent functions are employed. 

In order to obtain the proper outcomes the weights must be adjusted properly. One way to do this is 

through a supervised training process, minimizing a cost function from a collection of examples with 

already known results or targets. Thus, the training phase consists of running a set of coupled inputs 

and targets  , ,p p

i kx y with 1, , ;i n 1, , ;k l 1, , ,p N where N is the number of example 

pairs, adjusting the weights such that minimize the cost function 
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where   are the ANN's weights defined as before in a vector representation and
p

ky  are the ANN's 

outcomes for the 
p

ix inputs. In this work, the minimization of this cost function is made by a gradient 

descent algorithm called backpropagation [7]. This method searches the directions where the error 

diminishes more on each time step t , and updates the value of each 
ij at the next time step 1t   by 

the rule 
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with 0 1   the parameter known as the learning rate, determined by the user; 

 ( ) ( 1)ij ijt t     is called the momentum term, added for preventing that the minimization 

algorithm gets trapped in a local minimum, and 0 1   is another parameter to be adjusted by the 

user. The number of iterations for training depends on the learning parameter, the random weights 

initialization and the training set. The resulting weights after this process are used to compute the 

values in the prediction set.  

4.  Methodology 

As mentioned in section 1, the main idea of this work is to use the velocity profile as input for the 

ANN, so it learns its associated Reynolds number giving some particular characteristics of the fluid 

and the cylinder. As a first step, we generate the velocity profiles using the analytic solution given by 

equation (2). It was assumed a fluid with a kinematic viscosity 
20.001m / s   flowing through a 

cylinder of 0.5m, considering the magnitude of the body force F as the independent variable to 

construct 100 representative cases, in a range from 20 to 2000 Re with steps of 20.   On each case, 

100 values of the velocity of the fluid ( )xv y  inside the cylinder have been extracted over a line 

transverse to the flow direction to be the inputs of the ANN. In figure 1, we present some of these 

profiles. 

As the rule of thumb suggests, 80% of data should be used as training set, 10% as validation set 

and the remaining as the prediction set. The validation set is completely unknown to the ANN in the 

weight adjustment process, and is considered to check the performance of the ANN. In general, 

training is continued until the error in validation set gets into a local or global minimum, with the 

intention to avoid over-fitting on the training pairs. Sets were selected as follows: 

 Prediction set: Values of the x component of the velocity, i.e., ( )xv y , for the simulation with 

Re = 300, 600, 900, 1200, 1500, 1800, 1940, 1980, 2000, some of them are shown in figure 1. 

 Validation set: ( )xv t  values and their corresponding Re for 20, 40, 120, 280, 480, 1280, 1520, 

1760, 1880 and 1920. 
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 Training set: The ( )xv y  values for the remaining cases for Re starting from 60 to 1900. 

Leaving the cases with Re = 1940, 1960, 1980, 2000 as a test to explore the extrapolation 

capabilities of the algorithm. 

 

Figure 1. Velocity profiles inside 

the cylinder with a 0.5m 

diameter, for different Re. These 

curves were obtained modifying 

F in equation (2). 

ANN's weights are randomly initialized. To show consistency on the results independently of their 

initial condition, ten ANNs have been constructed with the same structure, to calculate an average of 

the Re predicted. Every network has the following structure: 

 Input layer with 100 inputs consisting of the x component of velocity, i.e., ( )xv y . 

 Hidden layer with ten neurons, using the hyperbolic tangent as activation function. 

 Output layer with a single neuron equipped with a linear function, giving the ANN's Re 

prediction. 

 

Scaling data in ML is required in almost all cases. In this particular one, data seems to be in an 

appropriate range, however the number of inputs might overload the neurons' activation functions, in 

this case the hyperbolic tangent function is used in the hidden layer. We scaled the input values by a 

factor of 10 and the targets by a factor of 100, such that the ANNs produce the best results compared 

with other approaches such as max-min, mean-standard normalization in inputs; or logarithmic 

rescaling at the targets. The ANN's outcomes were rescaled back to obtain the physical results.  

5.  Results 

Using a learning rate 0.05   and 0.5  together with backpropagation algorithm, the ANNs 

required in general from one thousand to five thousand iterations and a couple of minutes to reach a 

minimum on the validation set, time at which a signal to stop the training set was triggered. On figure 

2, we observe one of the ANN's root mean square error (RMSE) on the training phase. The errors in 

training and validation decrease initially together, but in this case, after 1173 iterations the validation 

error starts growing slowly. This is the moment when the training algorithm was stopped saving those 

weights for the prediction phase.  
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Figure 2. RMSE of training 

and validation phase. The 

ANN's training is stopped 

when the validation error 

gets a local or global 

minimum. In this case it 

was stop at iteration 1173, 

after which the error 

increases smoothly. 

In table 1, we present the averaged values computed by the 10 ANNs and the relative error for their 

predictions. The network reached an accuracy of  100%, considering an error less than 0.5% over all 

sets, this means that the network was capable to classify all unknown elements with an error less than 

0.5%. In the extrapolation regime (Re = 1940, 1960, 1980, 2000), the relative errors are bigger than in 

the interpolation regime since the ANNs were trained with Re = 1900 as the top training case, figure 3. 

The best results are on the middle region of data, for Re from 600 to 1800, those samples lie within the 

interpolation regimen and nearly other samples in the validation set. This shows the sensitivity of the 

ANN to the selection of the training and validation sets.  

6.  Conclusions 

In this work, we presented a method to predict the Reynolds number in a two dimensional Poiseuille 

flow with an accuracy of 99.5 % for unknown flow patterns, this performance is reached based on the 

simplicity of the problem. The paper shows the first step towards the construction of a numerical 

method capable to predict physical constants analyzing only a snapshot of a vector field (in this case 

the x component of the velocity). Considering  the good performance shown in here we are planning to 

consider more complicated scenarios. In particular, we would like to implement an ANN that predicts 

the Reynolds number of an incompressible fluid flowing around a cylindrical obstacle, expecting that 

the complexity of the problem could decrease the ANN performance. These results were obtained 

evaluating a formula. However, in more complicated scenarios, the inputs for the ANN cannot be 

generated using analytic solutions, and it will be necessary to use data directly from experiments or 

obtained using numerical simulations, nevertheless once trained the results can be obtain faster than 

other approaches. 
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Table 1. Predictions and errors made by the ANNs in the prediction 

set. All error are less than 0.5%. In the cases out of the training range 

(Re = 1940, 1960, 1980, 2000) the error increases as expected. 

Reynolds 

 

Prediction Relative Error (%) 

300 300.414±0.355 0.138 

600 600.107±0.192 0.018 

900 900.232±0.295 0.026 

1200 1200.028±0.124 0.002 
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1500 1499.702±0.348 0.020 

1800 1800.922±0.101 0.051 

1940 1937.841±0.596 0.111 

1960 1956.434±0.842 0.182 

1980 1974.664±1.140 0.270 

2000 1992.493±1.490 0.375 

 

 

Figure 3. Relative errors between the 

real Re and the ANNs' averaged 

outcomes in the prediction set. All 

errors are less than 0.5%, however 

those outside the interpolation regime 

increase. 
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