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Abstract. We introduce a nonsymmetric version of Jacobian elliptic functions. With these 

functions, we are able to obtain linear superposition solutions of the non-linear Schrödinger 

equation for a free condensate. These functions are more general than that of Jacobi and 

contain them as a special case. The eigenfunctions for a condensate in a box are considered. 

1. Introduction 

Since the Gross-Pitaevskii equation (GPE)[1,2] is widely accepted as a valid model for the dynamics 

of the Bose-Einstein condensate at    $ K, as well as for other systems, the properties of this 

equation are of interest, in particular the finding of its eigenstates. 

 For a free condensate, besides the ground state[3] and Zakharov's solutions[4], the solutions are 

known in terms of Jacobi's elliptic functions[5,6] and of hyperbolic functions and they have been used 

in order to find the eigenstates of the particle in free space, inside a box and in a ring[7,8]. 

 It was also found a way to linearly superpose Jacobi's elliptic functions by adding constant terms to 

their arguments[9]. 

 In this paper, we introduce a three parameters elliptic-type functions which allows us to deal with 

the linear superposition of the usual Jacobi's elliptic functions, and then find additional steady 

solutions for nonlinear quantum systems. 

 In Jacobi's elliptic function sn(u), the nonlinearity is found as the assignment sn(u)=sin( ) with the 

relation between the variables u and   given as                   
 

 
. In this paper we explore 

the use of other change of variable. In section 2, we use another relationship between u and   and 

obtain additional solutions to the nonlinear Schrödinger equation, real, periodic ones and which 

contain the usual Jacobi's functions as special cases. 

 With these functions, one can find additional eigenstates for some quantum systems. In Sec. 3, we 

use the functions introduced in this paper in order to find some eigenstates for the nonlinear quantum 

condensate in the infinite line. 

 

2. A set of nonlinear functions 

Let us consider the change of variable from   to   defined by the Jacobian 
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Where        are real,                   . Thus, the relationship between   and   is 

 

 

VIII International Congress of Engineering Physics                                                                            IOP Publishing
IOP Conf. Series: Journal of Physics: Conf. Series 792 (2017) 012054          doi:10.1088/1742-6596/792/1/012054

International Conference on Recent Trends in Physics 2016 (ICRTP2016) IOP Publishing
Journal of Physics: Conference Series 755 (2016) 011001 doi:10.1088/1742-6596/755/1/011001

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1



 

 

 

 

 

 

   
  

   
 

 
                             

 

 
,      (2) 

 

and we define the nonlinear functions 
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As with the trigonometric and elliptic functions, let us also consider the ratios between the above 

functions, 
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Figure 1. Plots of the nonlinear functions for 

A=0.1, B=0.9 and  =1.2. Note that the 

functions cna and sna have different shapes 

and, thus, they are not just the other shifted 

by some amount. 

 Figure 2. Some of the values of nonlinear 

quarter period          , for      . 

 

 

Some plots of these functions are shown in Fig. 1. Note that the        function is not just the shifed 

version of       , and viceversa, as is the case of the trigonometric functions        and        

functions which have the same shape but are shifted by    . 

 Quarter period of these functions is defined as 

 

           
  

   
 

 
                             

   

 
,     (7) 

 

A plot of           can be found in Fig. 2 for      . 
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Figure 3. Plot of       for A=0.1, B=0.9 and 

 =1.2. 

 

We also introduce the integral 

 

                 
 

 

 

 

which resembles Jacobi's Elliptic integral of the second kind. This function is shown in Fig. 3 for a set 

of values of the parameters. 

 In next subsections, some algebraic properties of these functions are derived. 

2.1. Algebraic properties 

Some algebraic relationships between the above functions are 
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2.2. Derivatives 

We now find the derivatives of the functions introduced earlier. 

                     ,                            ,    (16) 

                        ,                                   ,        (17) 

                            ,                                   .  (18) 

2.3. Eliminant equations 

The eliminant equations, also known as energy or Liapunov functions are 
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2.4. Differential equations 

Second derivatives of the functions lead to the differential equations for them. For sna, cna and dna we 

have that 
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 The other functions, osa, oca and oda, are also solutions of similar differential equations, according 

to the following lemma, 

 

Lemma. If      is a function which satisfy the nonlinear differential equation 
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and the derivative of      is such that 
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with   and   real constants, then        also satisfy a similar nonlinear equation, 
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 Then, the other functions, namely osa, oca and oda will also satisfy a similar differential equation, 
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 The derivatives of the inverse functions are 
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Then, as expected, we can see that these functions also invert the same integrals that Jacobi's functions 

invert. 
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 This is the minimum set of properties which will allow us to find some eigenstates of the one-

dimensional nonlinear Schrödinger equation for a free condensate. 

 

3. Condensate in an infinite or periodic medium 

As an application of the use of the functions introduced in the previous section, we find some real, 

periodic solutions of the non-linear Schrödinger equation for a condensate in an infinite medium and a 

constant potential. 

 The one-dimensional nonlinear time-dependent Schrödinger equation for a condensate in a constant 

potential is written as 

 

   
        

  
 

         

                         ,     (40) 

 

where  ,  ,        and        are dimensionless quantities, with scaling factors          for 

time,           for energy. The length is scaled by  , a characteristic length of the system of 

interest, and the normalization factor for the wave function is   .        is the wave function for the 

Bose-Einstein condensate (BEC),             
 ,   is the mass of a single atom,   is the 

number of atoms in the condensate,            characterizes the atom-atom interaction, and   is 

the scattering length.  

 The functions introduced in this work can be used to find stationary states for the infinite line or for 

a system which is periodic like a particle moving on a ring. For the ring, the condition is that the 

length of the ring should be a multiple of the period of the nonsolitonc functions which is 

           For a solitonic function we can have symmetry-breaking eigenstates.[4,5] 

 As with the other solutions,[7] there are states which can travel without distortion; the soliton-type 

states. Their time dependency is given by 
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for                       . Another soliton-type solution is 
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valid when     . A third soliton-type solution is provided by the oca function, 
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with    ,           , and                      . There is also a soliton type 

solution involving the function osa, 
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This solution is valid if                       . And there is a last soliton-type solution 

given by 
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where                       ,         ,                       , 

                       and          are the corresponding velocities of these waves. 

 

Remarks 

We have found that one can obtain additional solutions of the nonlinear Schrödinger equation, with a 

constant potential, by using other change of coordinate than the one used in Jacobi's elliptic functions.  

 An advantaje of these functions is that they facilitate the solving of boundary problems for a free 

Bose-Einstein condensate. Then, we can have solutions for the same type of systems that are found in 

the linear case. 

 As is the case with Jacobi's functions, the set of functions we have introduced are interpolations 

functions between the linear solutions (trigonometric functions) and purely nonlinear (hyperbolic and 

trigonometric times a complex factor) functions. 

 An inconvenience of these solutions is that they do not carry any momentum at all. Another one is 

that they do not describe the decay of the wave function. These behaviours are found in the linear 

system and we expect that something similar can be found in the nonlinear case. We are currently 

looking for the appropriate changes of variables for those situations, as well as for solutions in higher 

dimensions. 
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