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Abstract. An approach for estimating thermodynamic properties of gases from the speed of
sound u, is proposed. The square u2, the compression factor Z and the molar heat capacity at
constant volume Cy are connected by two coupled nonlinear partial differential equations.
Previous approaches to solving this system differ in the conditions used on the range of
temperature values [T, Tma]. In this work we propose the use of Dirichlet boundary
conditions at Tpin, Tmax. The virial series of the compression factor Z =14+Bp+Cp?+... and other
properties leads the problem to the solution of a recursive set of linear ordinary differential
equations for the B, C. Analytic solutions of the B equation for Argon are used to study the
stability of our approach and previous ones under perturbation errors of the input data. The
results show that the approach yields B with a relative error bounded basically by that of the
boundary values and the error of other approaches can be some orders of magnitude lager.

1. Introduction

The knowledge of thermodynamic properties of gases is of interest in molecular physics and its
industrial applications. Generally, heat capacities are measured with uncertainties which can be orders
of magnitude larger than those of thermal properties. The speed of sound u yields a way to estimate
caloric properties with an accuracy exceeding that of direct measurements [1]. In this work an
approach to estimate thermodynamic properties from speed of sound data, is proposed. The stability of
this approach under perturbations is studied together with that of two other approaches [2]-[6], by
means of the virial series for gases. Accurate estimation of virial expansions is of interest yield a
connection between microscopic and macroscopic gas theories, e. g., to constraint multiparametric
equations of state and develop models of intermolecular interactions [7], [8]. The approach and the
stability analysis are given in section 2 and section 3 is devoted to some concluding remarks.
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2. The new approach and its stability

Hereafter partial derivatives will be indicated as follows 0Z/dT=Zr, 0?Z/0Tdp=Zr,. A closed system of
equations that connect the speed of sound u with the compression factor Z=p/RTp and the molar heat-
capacity at constant volume Cy is

pZ,=-7Z- (RICy)(Z+TZy)+F, F=Mu?RT, ey
pcv,p = - R( TZZTT+ 2TZT) ,

where T, R, p, M, p, are the temperature, the universal gas constant, the molar density and mass, and
the pressure. Several approaches have been proposed to solving this system in a rectangular region
{Tin<T<Tax, 0<p<pma} Where the speed-of-sound data u are known. Since this is a system of first
order in p, it is usually solved with initial conditions given by the perfect-gas limit, namely,

Z=1, Cy=Cy?7?2(T) at pun=0. 2)

The main difference between previous approaches lies in the conditions used on the interval of
temperature values [T, Tmax]- A first approach, which will be referred to as the initial value method
(IVM) [5], has used initial conditions in the temperature

Z=7""(p) , Z1=Z:""(p) at Ty . (3a)

Although this approach can provide accurate thermodynamic properties some inaccuracies in the
surface of Cy have been reported and it was pointed out that a source of error is the estimation of the
derivative Zr at Ty, whose relative error is one order of magnitude larger than that of Z at T, [5]. In
order to avoid the estimation of Zr in [6] it was proposed to solve the problem with Dirichlet boundary
conditions (DBC's) on two isotherms in the lowest range of temperature values T n, Th,

7Z=7""(p) at Tpin, Z=Zy(p) at Ty, (4a)

e. g, in a range with Ty - Tiin = 140 K it was used Ty~Twmin+5 K. In this work we propose the use of
the initial conditions (2) and the following DBC's

Z=7""(p) at Tin, Z=Z""(p) at Tpnay - (52)
A way of studying the stability of these formulations is given by the virial series

Z =1+Bp +Cp2+Dp3 +...
CV:CV 29 (T)+Cv’1p + Cv,z p2+...

F =vyo(u?uo?)=vyo+yoB.p+..., uo?=(yoRT)/M,
which lead to linear ordinary differential equations for B, C, .... . The equation for B is
By + (1+2Co) Bs+ 2(Co+1)Co B = Co?yo f3, (6)
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where we set Co=Cv ??/R, x =In 1, T = T/T,, and T, is a reference value. To get analytic solutions of
equation (6) we consider the gaseous Argon with C vy ?? = 3/2R, yo = 5/3, and reference values of B
are obtained from the equation of state (eos) reported in [8]. Experimental speed-of-sound data u with
T between T,;,=110 and T,,,,=450 yield T,=280 K yield 3, values reported in [9] with which we get the
least-squares estimation

B.=-117.7019172 + 210.518817! - 666.2851+1174.8221-839.872312+314.131613-48.37163731t*  (7)

Hereafter values of B and [ are in cm3mol 1. The conditions corresponding to (3a), (4a), (5a), are

B = Bmin ) szmein at Tmin ) (3b)
B =B™ at T, B=B, at Ty, (4b)
B =B™ at Tpn, B=B™  at Ty . (5b)

The eos [8] yields B™" = -153.47835, B,""=280.7384, B™=3.59194, with which the equation (6) is
solved analytically. The solution of equation (6) with the conditions (3b), (4b), (5b), will be denoted
by B'YM, BPBCW BPBCO) regpectively.
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Figure 1. Deviations with respect to the eos for Argon of Ref. [8].

The plot of the difference B"™-B®, BPE®._BIl v, T is given in figure 1, where B® are the values
from the eos [8]. The IVM yields B™ a closer B®! than the B”®“® given by our approach, although
BPBCO_B®I is of order 0.25, the uncertainty of B values reported in Table 16 of [8]. To study the
stability under perturbations of the input data we solve analytically the equation
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B + (1+2Co) B, + [(1+k)Co+2]Co B® = Co?yo [.°
(8)

where the superscript e indicates a solution with errors in the input data. The errors e; are defined by
the following expressions

B*(Twmin) = (1+1072e1) B(Twin) »  By*(Tin) = (1+1072e2) By(Thin) » )
BY(Toe) = (1410723) B(Tuw) ,  BS(T) = (141024 sin9x) Bu(T) .

Thus e; yields the percentage error ;= 100(q*-q*)/q*=. The factor sin9x introduces a nonuniform error
distribution in (3, (7). The effect of an error e; in the perturbed solution B¢ is measured by means of the
percentage error

%AB°=100x[(B*-B*=")/(B*"-7.5)] (10)

where the denominator B<-7.5 is used to avoid the singular value B=0 at T~408 K and B* denotes
the virial coefficient obtained by without input data errors. The relative uncertainty of the velocity data
Au/u~10~% yields es of order 0.3%, so that the errors in B are dominated by the error in
complementary conditions (3), (4), (5).

The graph of %AB"™™* with ex=e4=0.3 and increasing values of the error e2=0.3, 1, 5, in By, is given in
figure 2 and shows that the monotonic growing of the absolute value of %AB™™* is faster as the error
in the derivative increases. In contrast, figure 3 shows that the error %ABP*“®*¢ is bounded basically
by €. The second DBC in (4a) is defined with T,=120 K and B”*“®*== -130.8880 at T,. The
perturbation of this value is

BDBC(4),e (Tb) — (1+10_2eb) BDBC(S),e:O(Tb) .

For e,=e; the absolute value of the error %AB"®“®* is bounded by that of e; only in the interval
[Tmin, Tv] and grows monotonically as T increases in the complementary region [T, Ty.x]. Figure 4
shows that this absolute error can grow rapidly when the sign of e1 and e, is different. Hence, the
DBC's (4a) can yield a very unstable solution.
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Figure 2. Relative error with e,=e,=0.3 and increasing values in the error e, of the
derivative B, at T .
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Figure 3. Relative error of B”*“” with increasing values of e,= e;=e,.



VIII International Congress of Engineering Physics IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 792 (2017) 012035 doi:10.1088/1742-6596/792/1/012035

10 ‘
N :
OF e 7
L~
AY ~~1~ —
\ Al . . . .
A0 o T e e R S R e e e - 7
\ : ‘ ; . mmemm—ea L
v : =<
PRI
A
(] \’
g B[ ‘\,\r/ S S
] ., ‘ ‘
a . .
D 40 : :
< % ‘
° S :
° . Lo, . . . .
S0 I G B - -
T,
60 | G T .
~,
N,
N
70 H — — B SN
ej— 0.3, €= -ej . : : : . N
---0=10 e=-e | : . : : \
1 b I : : : : »\
{0 o I, e=50 e=-e | : B
: I b J\ | | | |
100 150 200 250 300 350 400 450

TIK

Figure 4. Relative error of B”*“® determined by DBC’s (4a).

3. Conclusions

This work proposes an approach to compute thermodynamic properties from speed of sound data by
solving equations like (1) by means of DBC's (5). Analytic calculations of the virial coefficient B
show that these boundary conditions yield stable calculations with an error bounded approximately by
that of the DBC's, in contrast with the other approaches whose error can grow rapidly as T increases.
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